Biology 4	605/7220
Quiz #9a	

Name	
	18 November 2002

1. Hursting et al. (1993 Clinical Chemistry 39:683) found that prothrombin fragment concentrations depended on age, sex, and smoking status in 357 healthy individuals. Assign symbols to variables. Assuming no interaction terms, write a general linear model corresponding to their analysis.

Name	Symbol
	·
	<u> </u>
	· ———

Source	df	

GLM	=	

Complete the first two columns of the ANOVA table (above).

2. For a 2 allele locus we let p = frequency of one allele in the parental generation, andq = 1 - p = the frequency of the other allele. At Hardy Weinberg equilibrium, the expected proportion of homozygous and heterozygous offspring is given by

$$\hat{p} = (p+q)^2 = (p^2 + q^2) + 2pq$$

 $\hat{p}=(p+q)^2=(p^2+q^2)+2pq$ where (p^2+q^2) is the expected frequency of homozygous offspring 2pq is the expected frequency of heterozgygous offspring.

For 1000 offspring, compute the expected proportion (p) of homozygous and heterozygous offspring at Hardy-Weinberg equilibrium, when p = 0.5 in the parents. Compute the expected frequency $\hat{f} = 1000 \, \hat{p}$.

ĵ=	 homozygous	î =	
	 heterozygous		

3. Compute the goodness of fit G for the following frequencies of offspring relative to Hardy -Weinberg equilibrium with p = 0.6 in the parents.

 $G = 2 \Sigma f \ln(f/\hat{f})$ where \hat{f} is the value expected from theory.

Expected	Observed	
$\hat{\mathbf{f}}^-$	f	
48	_50_	heterozygous
52	_50_	homozygous