Using the following format, complete exercises 18.7 18.13 18.18 18.28 18.34 in Sokal and Rohlf 1995.

(A) Define variables in a tabular format, as follows.

name symbol scale

scale = nominal, ordinal, or cardinal cardinal = interval <u>or</u> ratio scale.

- (B) Using the symbols, write a general linear model relating the response variable to explanatory variable(s) and interaction terms (if appropriate).
- (C) Complete the first two columns of the ANOVA table <u>source df</u>
- (D) State the name of the analysis, from the following list.

 t-test, one-way ANOVA, two-way ANOVA, three-way ANOVA
 paired comparisons, randomized blocks, repeated measures
 hierarchical (nested) ANOVA
 regression, multiple regression,

 1-way ANCOVA (= 1 nominal and 1 cardinal scale explanatory variable)
 2-way ANCOVA (= 2 nominal and 1 cardinal scale explanatory variable)
 none of the above

- A. ioP = inorganic phosphorus $df_{tot} = 10*14-1 = 139$ t = time (days) $df_t = 14-1 = 13$ S = subjects (10) $df_S = 10 - 1 = 9$ $df_{err} = 139 - 13 - 9 = 117$
- D. Randomized blocks. To test for interaction (two-way ANOVA) take at least 2 measurements each morning, rather than one.

Exercise 18.13

- D. One-way ANOVA. Check for constancy of error variance by plotting residuals versus fits.

If not constant, and p-values are far from criterion ($\alpha = 5\%$) then undertake randomization to obtain more accurate p-value.

- bp = bile pigment (%)
- Correlation, because explanatory variable X is not known. D.

- A. Psize_{lag=0} = prey size (0 = big, 1 = small) $df_{tot} = 30 1 = 29$
 - Psize_{lag=1} = prey size matched to Psize_{lag=0} by lag = 1 df_{lag=1} = 29 1 = 28
 - Psize_{lag=2} = prey size matched to Psize_{lag=0} by lag = 2 $df_{lag=2} = 29 2 = 27$
 - $Psize_{lag=3} = prey size matched to <math>Psize_{lag=0}$ by lag = 3 $df_{lag=3} = 29 3 = 26$
- D. Autocorrelation at lag 1, 2, 3, possibly more. Explanatory variable X unknown.

Alternative: see question 6 on exam above----> randomization test.

Alternative: as in question 6 above---> test fit to binomial outcome, with 50% success

Exercise 18.34

- A. $N = plant abundance df_{tot} = n 1$
 - pV1 = physical variable 1 (e.g. light in lux)
 - pV2 = physical variable 2 (e.g. nutrients)
 - bV1 = biological variable 1 (e.g. distance to nearest tree)
 - bV2 = biological variable 2 (e.g. presence/absence of micorhizae in soil)
- D. Multiple regression, stepwise dropping of variables. $df_{err} = df_{tot} k$ where k = number of variables in the model.