Name \qquad Key
25 September 2007

1. The expected number of events k in area A , if events are rare and random, follows a Poisson distribution. The expected frequency of events $\operatorname{Pr}(\mathrm{X}=\mathrm{k})$ for a Poisson distribution is calculated as

$$
\begin{aligned}
& \operatorname{Pr}(\mathrm{X}=\mathrm{k})=\mathrm{e}^{-\mu} \mu^{\mathrm{k}} / \mathrm{k}!\quad \mathrm{k}=0,1,2,3 \text { etc } \\
& \operatorname{Pr}(\mathrm{X}=0)=\mathrm{e}^{-2} 2^{0} / 0!=0.135
\end{aligned}
$$

where $\mu=\lambda$ A,
e is approximately 2.71828 , any number to the zero power is 1 , and $\mathrm{k}!(\mathrm{k}$ factorial $)$ is $\quad 0!=1,1!=1,2!=2 * 1,3!=3 * 2 * 1$, etc.

If a laboratory population of bacteria grows at a density of $\lambda=0.02 / \mathrm{cm}^{2}$, what is the probability of finding no colonies $\operatorname{Pr}(\mathrm{X}=0)$ in an area of $\mathrm{A}=100 \mathrm{~cm}^{2}$?

Beneath the equation, write the equation with the numbers you plan to use. [1]
Compute the probability of finding no colonies $\operatorname{Pr}(\mathrm{X}=0)$ if $\mathrm{A}=100 \mathrm{~cm}^{2}$ _0.135__[1]
2. Construct the frequency distribution $\mathrm{F}(\mathrm{Y}=\mathrm{k})$ and the cumulative relative frequency distribution $\mathrm{RF}(\mathrm{Y} \leq \mathrm{k})$ from the cumulative frequency distribution $\mathrm{F}(\mathrm{Y} \leq \mathrm{k})$ of mites found on 589 chironomid flies, where the outcomes are $\mathrm{k}=$ number of mites per chironomid fly (from Sokal and Rohlf 1995, Box 5.6).

k	$\mathrm{F}(\mathrm{Y}=\mathrm{k})$	$\mathrm{F}(\mathrm{Y} \leq \mathrm{k})$	$\mathrm{RF}(\mathrm{Y} \leq \mathrm{k})$
0	-442	442	$442 / 589=0.75$
1	$-91-$	533	$-0.905 _$
2 or more	-56	589	-1.00

3. If the probability of an outcome is some percentage p, then the odds in favour of the outcome are defined as Odds $=\mathrm{p} / \mathrm{q}$ where $\mathrm{q}=1-\mathrm{p}$. The odds against that outcome are thus q / p. Odds are expressed relative to a value of 1 .
Read the expression (Odds $=4: 1$) as "odds are 4 to $1 . "$
If the probability of finding an uninfected chironomid had been 30%, what are the odds of finding an uninfected chironomid ? \qquad
\qquad
