\qquad

1. Name a quantity of interest to you that has dimensions of M / T. In the spaces below provide a complete five-part definition of the quantity (name, symbol, procedural statement, numbers, units).

TYPICAL
NAME SYMBOL VALUES
SCALE (typical units)

Procedural statement (you may have to invent this)
$\operatorname{sum}(X)=\sum_{i=1}^{n} X_{i}=X_{1}+X_{2}+\cdots+X_{n} \quad n$ is number of observations (it has no units)
$\operatorname{mean}(X)=\bar{X}=\frac{1}{n} \sum^{n} X \quad \quad$ variance $(X)=s^{2}=\frac{1}{n-1} \sum((X-\bar{X}))^{2}$
coefficient of dispersion $\quad c d(X)=\frac{\operatorname{variance}(X)}{\operatorname{mean}(X)}$
2. Substitute the symbol for your quantity within the parentheses in the following expressions, and fill in the blanks.
$\operatorname{sum}(\quad)$ has units of \qquad
mean() has units of \qquad
$c d()$ has units of \qquad
3a. The median is defined as a value such that half the observations are above and half are below. Report the mean and median values of the following quantity (don't forget units).

$$
\begin{aligned}
\mathrm{E}=\left[\begin{array}{lllll}
65 & 5 & 5 & 10 & 15
\end{array}\right] \text { Joules } & \operatorname{mean}(\mathrm{E})
\end{aligned}=\begin{aligned}
& \operatorname{median}(\mathrm{E})
\end{aligned}=\square
$$

3b. State which is greater (mean or median) \qquad
3c. Explain why.

