1. R.D. Budd (1989, *American Journal of Drug and Alcohol Abuse* 15: 375-382) reported cocaine levels (microgram/ml) in 70 victims of violent death, in three categories.

Homicide	Accident	Suicide	
50	12	8	n
1.387	1.511	1.094	mean
1.319	2.175	1.002	stdev
0.05	0.05	0.05	alpha
1.013	0.129	0.256	lower limit
1.762	2.892	1.932	upper limit

If the alpha for homicides decreases does the CI increase or decrease? <u>increase</u>[1]

2. Mendel (1865) as reprinted in *Experiments in Plant Hybridization*, Harvard University Press (1933) reported the frequency of yellow and green pea seeds in a breeding experiment.

	Yellow	Green
Observed in sample	25	11
Expected in population	27	9

If the probability of a seed being yellow is p, then the odds in favour of a yellow seed are defined as Odds = p/q where q = 1 - p. Read the expression (Odds = p/q: 1) as "odds are _____ to 1."

The odds ratio, for a sample relative to a population, is defined as the odds for the sample, divided by the odds for the population.

What is the probability that a seed is yellow, in the sample of 36 seeds? p = 0.694[1]

What were the odds of obtain a yellow seed in the sample $?Odds = __25/11=2.27:1__[1]$

What is the expected (population) probability of a yellow seed ? p = 27/36 = 0.75[1]

What are the expected odds of obtaining yellow seeds ? Odds = $\underline{27/9=3:1}$ [1]

What is the odds ratio, for the sample relative to the population?

 $OR = _2.27/3 = 0.76$ [1]

$(10 \text{ km})^{1.2} = \underline{10^{1.2} \text{ km}^{1.2}} = 15.85 \text{ km}^{1.2}$
(10 km) = <u>10 km - 15.85 km</u>
$R = (1000 \text{ kg})/\text{kg} \log_{10}(R) = \frac{\log_{10} 10^3 = 3}{2}$
3b. Convert 15 kilometres travelled in 24 hours to speed in metre/second $ \frac{15km}{24hr} \frac{1000m}{1km} \frac{1hr}{60 \min} \frac{1 \min}{60 \sec} = 0.1736m / \sec $
4. Hypothesis testing is carried out with frequency distributions, either observed or theoretical.
What is the principal advantage of using an observed distribution?
No assumptions
What is the principal disadvantage (or cost) of using an observed distribution? [1
It takes far longer to obtain a p-value from an observed distribution than to obtain a p-value from a theoretical distribution
What is the principal advantage of using a theoretical distribution?
It takes little time to compute a p-value
5. In the blank spaces below list the 5 parts of a well defined biological quantity then give a five-part definition of human eyeblink rate. [5 The numerical values you list must be biologically reasonable. If you don't have a watch you can count seconds by repeating to yourself 1 monkey, 2 monkey, 3 monkey
Name Symbol Procedural Statement Values Units Eyeblink rate 1/min to 60/min

Ho: Catch does not vary with age

H_A: Catch varies with age

Express in symbolic notation an H_A/H_o pair for testing whether catch decreases with age. [2] A convenient statistic to measure the pattern is β_{age} , the slope of the line.