Biology 4605/7220 Quiz #2b	Name Key 22 September 2004 (revised version)
For both (1) and (2) report computations to two de	cimal places.
1. Calder (1984 Size, Function and Life History, Cambridge University Press, p. 305) combined several allometric equations to obtain a relation between foraging bouts ($T = \text{days}$) and body size ($M = \text{kg}$). The relation that Calder obtained is that:	
$T = 3.04 M^{-0.26}$	
What is the expected time between foraging bouts	for a 12 kg mammal?1.59 days
Write a data equation for 12 kg mammal with a measured time between bouts of 2 days. =	
<u> </u>	1.59 days + 0.41 days
(2). Based on data from Arrhenius (1921 <i>Journal of</i> the number of species in a large quadrat to the woodland in Sweden is: $\frac{Nsp(large)}{Nsp(small)} = \left(\frac{A_{large}}{A_{small}}\right)^{0.4582}$	

If area is doubled $(A_{large}/A_{small} = 2)$ what is the expected ratio of species in the large relative to smaller quadrat ? Nsp(large)/Nsp(small) = 1.37

If area were increased by a factor of 10,

If there are 10 species in a small quadrat,

(Report this to the nearest whole number)

would the number of species increase by a factor of 10?

how many species in a quadrat that is 10 times larger?