1. The Monod equation describes the growth rate μ of bacteria (as a percentage) in relation to substrate concentration.

$$\mu = \mu_{max} \left(\frac{S}{S + K_S} \right)$$

$$\mu = \frac{1}{S} \frac{dS}{dt} = \% \ hour^{-1}$$

S = substrate concentration (mg/liter) $K_S = half saturation constant (mg/liter)$ $\mu_{max} = maximum rate of bacteria growth$ $\mu_{max} has units of % per hour$

Write a data equation for an observed value of $\,\mu$ = 0.95/hour (95% per hour), given S = 20 mg/liter

 $K_S = 2 \text{ mg/liter}$

 $\mu_{max} = 1/hour~(100\%~per~hour)$

Observed = Model value + Residual

2. Convert 15 kilometres travelled in 2 hours to speed in metre/second.

3. Complete the following computation.

 $(15 \text{ m})^{1.4} =$