Biology 4605/7220
Exam #1a

Name	
	1 October 2003

1.	Hypothesis	testing is	carried	out with	frequency	distributions,	either	observed
(er	npirical) or	theoretica	ıl.					

What is the principal advantage of using an empirical distribution? [1]

What is the principal disadvantage (or cost) or using an empirical distribution? [1]

What is the principal advantage of using a theoretical distribution? [1]

2. Walters and Green (1997, Journal of Wildlife Management 61: 987-1006) devised a value function for comparing management options.

$$v = (r - c)u - \theta \cdot u^2$$

v = value, in units of dollars (fish · year)⁻¹ $r = \text{maximum value per fish stocked (dollars fish}^{-1})$ with dimensions of [\$] [#]⁻¹

c = unit cost of stocking fish

 $u = \text{frequency of stocking (year}^{-1}) \text{ with dimensions of } [T]^{-1}$

What units does *c* have ? [1]

What units does θ have ? [1]

Add the correct exponents to the dimensional matrix

$$u = \begin{bmatrix} \$ \end{bmatrix} = \begin{bmatrix} \# \end{bmatrix} = \begin{bmatrix} T \end{bmatrix}$$

$$\theta$$
 ___ __ __ [3]

3.	Complete	the	following	computations.
----	----------	-----	-----------	---------------

 $(100 \text{ km})^{1.1} = \underline{}$

$$(49 \text{ km}^2)^{0.5} = \underline{\hspace{1cm}}$$

 $R = (20 \text{ km})/\text{km} \log_{10}(R) =$

[3]

6. Zang and Wynder 1992 (reported in Sokal and Rohlf 1995, Ex 17.20) obtained the following results in a retrospective study of risk of developing lung cancer, for smokers and non-smokers.

Lung Cancer (males)						
	present	absent	total	% present	odds of cancer	Odds Ratio
smoke	522	866	1388		:1	
non-smokers	15	822	837		:1	

Compute the percentage of males in which lung cancer is present. If the percentage of a group having cancer is some percentage p, then the odds in favor of having cancer are defined as $Odds = p/q$ where $q = 1 - p$. Read the expression $(Odds = p/q : 1)$ as "odds are to 1."	ur
The odds ratio, for one population relative to another, is defined as the odds for the one population (non-smokers), divided by the odds for the other population (non-smokers).	
Compute and fill in the survival percentages, the odds, and the odds ratio, in the table above.	[5]
7. A convenient statistic for the odds ratio is OR. Write the value of OR when the odds are the same for smokers and non smokers.	
OR =	[1]
In words, then in symbolic notation, state an H _A /H _o pair for testing whether odds of having cancer depend on smoking or not.	[3]

8. Assuming you did not know the distribution of the OR statistic, state how you would carry out a randomization test of your H_A/H_o pair. [2]

9. According to Hattori (1973 *Microbial Life in the Soil* p.384) oxygen uptake in the soil [M = ml/(ml-second)] depends on oxygen concentration at the soil surface ($C_o = ml \ O_2$ per ml liquid) the diffusion coefficient of oxygen ($D = cm^2/\text{second}$) the thickness of the oxidative surface layer (z = cm)

$$M = C_0 z^2 / 2D$$

Compute oxygen uptake when $C_o = 0.02$ ml/ml, diffusivity is D = 0.4 cm²/sec, and depth is 5 cm.

$$M = \underline{\hspace{1cm}} [1]$$

For this predicted value, compute the observed value when the residual value is 0.1 ml/(ml-second).