Biology 4605	7220
Quiz #3b	

Name _____23 September 2002

The Nicholson-Bailey equations of parasitoid-host interactions are as follows.

$$H(t+1)=b\cdot H(t)\cdot [e^{-a\cdot P(t)}]$$
 for hosts

$$P(t+1) = c \cdot H(t) \cdot [1 - e^{-a \cdot P(t)}]$$
 for parasitoids

H(t+1) = number of hosts in the next generation (t+1)

P(t+1) = number of parasitoids in the next generation (t+1)

a = search efficiency of the parasitoid

c = number of parasitoid offspring resulting from an attack of a host

b = per capita birth rate of hosts

1. If H(t), H(t+1), and P(t+1) all have units of organisms per meter along a transect in a potato field, what must be the units of search efficiency a

offspring	ner	attack	С	
Oliopinis	PCI	attack		

2. Complete the following table.

P(t)	H(t)	<u>a</u>	<u>C</u>	P(t+1)
10	100	4%	2	
10	100	8%	2	
10	100	16%	2	

3. In words, what happens to the number of parasitoids in the next generation when efficiency doubles?

4. If t has units of days, what units will the quantity ΔP have?

$$\Delta P = \frac{P(t+1) - P(t)}{t}$$

5. For a density of 100 potato nematode (hosts) per square meter, which is the more effective means of increasing parasitoids, doubling the parasitoid efficiency or doubling *c* by increasing the survival of parasitoid offspring?