1. Theodosius Dobzhansky (1948) reported H, the genetic heterozygosity in the fruit fly *Drosophila persimilis*.

Alt	Н	Н1	Н2	Н3	H4
850	0.59				
3000	0.37				
4600	0.41				
6200	0.40				
8000	0.31				
8600	0.18				
10000	0.20				

Compute H normalized to

its maximum value (H1), and to its minimum value (H2). Then compute H3 the deviation normalized to the mean. Compute H4 the deviation normalized to the standard deviation.

$$std(H) = 0.139694$$

$$H1 = \frac{H}{\max(H)}$$

$$H2 = \frac{H}{\min(H)}$$

$$H3 = \frac{H - mean(H)}{mean(H)}$$

$$H4 = \frac{H - mean(H)}{std(H)}$$

- 2. Convert 100 kilometres travelled in 24 hours to speed in metre/second.
- 3. Complete the following computations.

$$(10 \text{ km})^{1.4} = \underline{\hspace{1cm}}$$

$$R = (100 \text{ km})/(1 \text{ km}) \log_{10}(R) =$$