Name \qquad Key

1. For the following quantity, construct a frequency distribution (8).

$$
\text { Pulse }=P=\left[6975687169677068686768 \text {] [beats }{ }^{\text {ninin }}{ }^{\square 1}\right.
$$

2. The range is defined as the difference between the largest and smallest value of a quantity.

What is the range for the Pulse data? $\quad 75 \square 67=8$
What units will the range (of the Pulse rate) have ? __beats $\square \min ^{\square 1}$
3a. The median is defined as the observation that has an equal number of
observations above and below it. For the pulse data, what is the median? 68 \qquad
3b. Rescale the Pulse data from a ratio scale to a nominal scale by scoring a value positive if it is above the median (place + or \square sign beneath each value)

Pulse $=P=[6975687169677068686768]$ [beats Inin $^{\square 1}$
Pnominal $=[++\square++\square+\square \square \square \square]$
4. The mean is defined as the sum of the observations, divided by the number of observations. The median is defined as the observation that has an equal number of observations above and below it. The mode is defined as the most frequently occurring observation. Calculate these three measures of central tendency, for the pulse data.

$$
\begin{equation*}
\operatorname{Mean}(\text { Pulse })=\ldots 69 \tag{1}
\end{equation*}
$$

$\square \mathrm{P}=760$
$\operatorname{Median}($ Pulse $)=$ \qquad 68 \qquad (from above)
$\operatorname{Mode}($ Pulse $)=$ \qquad 68 \qquad (1)

Which of these three measures of central tendency is largest \qquad mean \qquad

Is the distribution symmetrical?
(Circle one) Yes

Discuss how symmetry or its lack affects the 3 measures of central tendency
5. Calculate the following quantities. Be sure you report units.

$$
\begin{align*}
& 4 \text { megameters }=\ldots 4000 _ \text {km } \tag{1}\\
& (30 \mathrm{~mm})^{1.1}=\ldots 42.15 \mathrm{~mm}^{1.1} \quad \text { (Report units here as well as a value) } \tag{2}\\
& 500 \mathrm{~m} * 2 \mathrm{~km}=\ldots \mathrm{km}^{2} \tag{1}\\
& 2 \mathrm{~cm} *(4 \mathrm{~cm})^{0.5}=\ldots \quad \mathrm{cm}^{1.5} \quad \text { (Report units here as well as a value) } \\
& 10 \text { calories }=\ldots 2.39 \ldots \text { Joules }(1 \text { kilocalorie }=4.186 \text { kiloJoule) } \tag{1}\\
& 30^{1.1}=42.15 \\
& 10 \mathrm{cal} \cdot \frac{1 \mathrm{~J}}{4.186 \mathrm{cal}}=2.39 \mathrm{~J}
\end{align*}
$$

8. Oxygen intake scales with body size (mass) as Mass ${ }^{0.72}$

Hence a doubling in body mass
will increase oxygen intake by a factor of $2^{72}=\ldots 1.65^{2}$
If body mass increases tenfold,
by what factor will respiration increase ? _ 5.25__
9. The Poisson distribution describes the frequency of events that are random and rare (i.e., average success rate under 5 per sampling unit). Using the cumulative distribution given to you for a Poisson distribution with mean of 0.5 , fill in the 2 blank values of the probability density function (pdf). $K=$ no events per unit, 1 event per unit, 2 events per unit, etc.
MTB > cdf;
SUBC> poisson .5.

POISSON WITH MEAN $=0.500$		
K	$P(X \underset{\text { cdf }}{\text { LESS }} \text { OR }=K)$	$\begin{aligned} & \mathrm{P}(\mathrm{X}=\mathrm{K}) \\ & \mathrm{pdf} \end{aligned}$
0	0.6065	-0.6065
1	0.9098	
2	0.9856	
3	0.9982	
4	0.9998	$0.9998 \square 0.9982=0.0016$
5	1.0000	

10. What is the probability of 1 or fewer balsam fir trees per unit, if the mean number is 0.5 balsam fir trees per sampling unit?
11. Survival percentage is defined as $\mathrm{e}^{\square \square}{ }^{* t}$ where \square is the mortality rate ($\% /$ month) and t is measured in months. When the mortality is $2 \% /$ month, what is the survival percentage after a year?
_ 78.7% \qquad
$e^{\square(0.02)(12)}=0.787$
12. An ecological geneticist, P.F. Brussard, calculated heterozygosity ($\mathrm{H} _\mathrm{Dps}=\%$) of the fruitfly Drosophila persimilis, in relation to altitude ($\mathrm{Elev}=\mathrm{ft}$), from data reported in 1948 by Theodosius Dobzhansky at mountainous locations in Yosemite Park in California.

Calculate the expected heterozygosity at an elevation of 10000 ft , assuming

$$
\begin{array}{r}
\text { H_Dps }=0.58 \square 0.000039 * \text { Elev } \\
\text { Heterozygosity at } 10000 \mathrm{ft}=\text { H_Dps }(10000 \mathrm{ft})= \tag{1}
\end{array}
$$

\qquad 0.19

Write a data equation, for an observed value of $\mathrm{H} _\mathrm{Dps}=0.68(68 \%)$ at 10000 ft

$\square_{\text {Elev }}=\square 0.000039$ is a parameter with units of \qquad $\% f^{\square}{ }^{\square 1}$

$$
\begin{equation*}
\square_{\text {Elev }}=\square 0.000039 \text { is a parameter with dimensions of } . \tag{1}
\end{equation*}
$$

\qquad L^{\square} \qquad
In words, what does $\square_{\text {Elev }}$ measure? (vertical) rate of change in heterozygosity
13. Set up a pair of statistical hypotheses $\left(\mathrm{H}_{\mathrm{A}}\right.$ and $\left.\mathrm{H}_{\mathrm{o}}\right)$ concerning whether heterozygosity changes with altitude. Use $\square_{\text {Elev }}$ in forming both hypotheses.

$$
\begin{align*}
& H_{A}: \square_{\text {Elev }} \square 0 \tag{1}\\
& H_{0}: \square_{\text {Elev }}=0
\end{align*}
$$

14. For the following situations would you accept or reject the null hypothesis $\left(\mathrm{H}_{0}\right)$, that the observed outcome is JUST LUCK? p is the probability of the observed outcome, calculated from a frequency distribution that applies when the H_{o} is true.

Circle one.

$$
\begin{array}{lll|}
\square=5 \% & 1 \square \mathrm{p}=98 \% & \text { Accept } H_{o} \\
\square=5 \% & \mathrm{p}=4.7 \% & \begin{array}{l}
\text { Reject } \\
H_{0}
\end{array} \\
\square=10 \% & \mathrm{p}=13 \% & \text { Accept } H_{o} \begin{array}{l}
\text { Reject } \\
H_{0}
\end{array} \\
\square=\text { Accept } H_{0} \quad \text { Reject } H_{o}
\end{array}
$$

