Name \qquad

1. An ecological geneticist, P.F. Brussard, calculated heterozygosity (H_Dpseu $=\%$) of the fruitfly Drosophila pseudoobscura, in relation to altitude (Elev = ft), from data reported in 1948 by Theodosius Dobzhansky at mountainous locations in Yosemite Park in California.
Calculate the expected heterozygosity at an elevation of 10000 ft , assuming
H_Dpseu $=0.712-0.000004 *$ Elev Heterozygosity at $10000 \mathrm{ft}=\mathrm{H} _\operatorname{Dpseu}(10000 \mathrm{ft})=$

Write a data equation, for an observed value of $\mathrm{H} _$Dpseu $=0.2(20 \%)$ at 10000 ft
\qquad $+$
$\beta_{\text {Elev }}=-0.000004$ is a parameter with units of

$$
\begin{equation*}
\beta_{\text {Elev }}=-0.000004 \text { is a parameter with dimensions of } \tag{1}
\end{equation*}
$$

In words, what does $\beta_{\text {Elev }}$ measure ?
2. Set up a pair of statistical hypotheses $\left(\mathrm{H}_{\mathrm{A}}\right.$ and $\left.\mathrm{H}_{\mathrm{o}}\right)$ concerning whether heterozygosity changes with altitude. Use $\beta_{\text {Elev }}$ to form both hypotheses.
3. For the following situations would you accept or reject the null hypothesis $\left(\mathrm{H}_{0}\right)$, that the observed outcome is JUST LUCK? p is the probability of the observed outcome, calculated from a frequency distribution that applies when the H_{o} is true.

Circle one.

$$
\begin{array}{llll}
\alpha=10 \% & \mathrm{p}=40 \% & \text { Accept } \mathrm{H}_{\mathrm{o}} & \text { Reject } \mathrm{H}_{\mathrm{o}} \\
\alpha=5 \% & \mathrm{p}=5.5 \% & \text { Accept } \mathrm{H}_{\mathrm{o}} & \text { Reject } \mathrm{H}_{\mathrm{o}} \\
\alpha=5 \% & 1-\mathrm{p}=93 \% & \text { Accept } \mathrm{H}_{\mathrm{o}} & \text { Reject } \mathrm{H}_{\mathrm{o}} \tag{1}
\end{array}
$$

4. Running speed scales with body size (mass) as Mass ${ }^{0.25}$

Hence a doubling in body mass will increase running speed by a factor of $2^{25}=$ \qquad
If body mass increases tenfold,
by what factor will running speed increase ? \qquad
5. The Poisson distribution describes the frequency of events that are random and rare (i.e., average success rate under 5 per sampling unit). Using the cumulative distribution given to you for a Poisson distribution with mean of 0.2 , fill in the 2 blank values of the probability density function (pdf). $\mathrm{K}=$ no events per unit, 1 event per unit, 2 events per unit, etc.
MTB > cdf;
SUBC> poisson . 2 .

6. What is the probability of 2 or fewer spruce trees per unit, if the mean number is 0.2 spruce trees per sampling unit?
7. Survival percentage is defined as $\mathrm{e}^{-\mathrm{z}^{* t}}$ where z is the mortality rate (\% / day) and t is measured in days. When the mortality is 60% / day, what is the survival percentage after a week ?
8. For the following quantity, construct a frequency distribution (8).

9. The scope is defined as the ratio of the largest to smallest value of a quantity.

What is the scope of the Pulse data \qquad
What units will the scope (of the Pulse data) have?
10a. The median is defined as the observation that has an equal number of observations above and below it. For the pulse data, what is the median?
10b. Rescale the Pulse data from a ratio scale to a nominal scale by scoring a value positive if it is $\underline{\text { above }}$ the median (see next question) (place + or - sign beneath each value)
11. The median is defined as the observation that has an equal number of observations above and below it. The mean is defined as the sum of the observations, divided by the number of observations. The mode is defined as the most frequently occurring observation.
Calculate these three measures of central tendency, for the pulse data.

$$
\begin{align*}
& \operatorname{Mean}(\text { Pulse })=\text { _____ } \tag{1}\\
& \text { Median(Pulse })=\text { (1) } \\
& \text { Mode }(\text { Pulse })=
\end{align*}
$$

Which of these three measures of central tendency is smallest
Is the distribution symmetrical?
(Circle one) Yes No
Discuss how symmetry or its lack affects the 3 measures of central tendency.
12. Calculate the following quantities.

$$
\begin{align*}
& 3000 \mathrm{~km}=\ldots \text { megameters } \tag{1}\\
& 6 \text { Joules }=\ldots \text { calories } \quad(1 \text { kiloJoule }=4.186 \text { kilocalories })
\end{align*}
$$ $(500 \mathrm{~cm})^{1.3}=$ \qquad (Report units here as well as a value)

$7 \mathrm{~km} * 500 \mathrm{~m}=\ldots \mathrm{km}^{2}$
$600 \mathrm{~mm} *(2 \mathrm{~mm})^{0.3}=$ \qquad (Report units here as well as a value)
$600 \mathrm{~mm}(2 \mathrm{~mm})$ (Report units here as well as a value)
13. Fill in the blanks in the following table (5).

MTB > pdf;
SUBC> binomial 10 0.5.
BINOMIAL WITH $N=10 \quad \mathrm{P}=0.500000$
$K \quad P(X=K) \quad P(X \leq K) \quad F(X=K)$
pdf cdf
0
0.0010
0.0098
-
1
20.0439
30.1172
$4 \quad 0.2051$
$5 \quad 0.2461$
$6 \quad 0.2051$
$7 \quad 0.1172$
$8 \quad 0.0439$
$9 \quad 0.0098$
$10 \quad 0.0010$ \qquad
5000
14. The probability of finding a mitotic cell is $0.5(50 \%)$ in a rapidly growing tissue.

What is the probability of finding
exactly 3 meiotic cells in a sample of 10 cells ?
What is the probability of finding
9 or more meiotic cells in a sample of 10 cells ?

