\qquad

1. For the following analyses, list the type of response variable (binomial or ratio scale), the number of ratio-scale explanatory variables, and the number of nominal scale (categorical) explanatory variables. Number $=0$ if absent.

Response Ratio-scale Categorical

ANCOVA.

Species diversity in logged and unlogged plots of tropical rain forest.

Multiple regression.

Sex ratio in small versus large slipper limpets.

Paired t-test.

Analysis of parasite load in 4 species of fish, controlled for body size.

Recapture numbers after release of 10, 6, 5 caribou respectively in 3 herds of caribou.

2a. Assuming a probability of recapture of $p_{\text {recap }}=0.5$ in each herd, calculate the expected number of recaptures $\mathrm{E}\left(N_{\text {recap }}\right)=\left(p_{\text {recap }}\right)\left(N_{\text {release }}\right)$ and observed odds.

Herd: GR JR LR
$\begin{array}{llll}N_{\text {release }} & \underline{10} \quad 6 \quad \underline{5}\end{array}$
$\mathrm{E}\left(N_{\text {recap }}\right)$
$N_{\text {recap }} \quad 4 \quad 2 \quad 1$
Odds
2b. Define response and explanatory variables, with symbols, to test whether recapture rate (odds of recapture) are the same in all three herds.

2c. Using symbols above, write a model to test whether the recapture rate (odds of recapture) are the same in all three herds.

