Biology 4605/7220	NAME	
23 September 2015		Quiz #3a

1. The Michaelis–Menten enzyme kinetics model (1913 *Biochem* Z 49: 333–369) is named after German biochemist Leonor Michaelis and Canadian physician Maud Menten. Yu and Rappaport (1997 *Environ Health Perspectives* 105 : 496–503) show that the Michaelis Menten model describes the clearance rate (k) of insoluble dust particles from lungs as a function of the maximum rate (kmax), the particulate burden (m), and the particulate burden (mhalf) at which k is half of kmax.

$$k = \frac{k \max \cdot mhalf}{m + mhalf} \qquad \qquad k = k \max\left(\frac{mhalf}{m + mhalf}\right)$$

The parameter *mhalf* and the variable *m* have units of milligrams (mg), *k* has units of %/day

a. Show units for the ratio in parentheses	and for <i>k</i> max		[1+1]
--	----------------------	--	-------

b. Explain your answer for units of *k*max

c. Does the ratio in parentheses increase or decrease as lung burden *m* increases?

Write your answer here _____ [no mark]

[2]

d. Given mhalf = 2.49 mg for diesel exhaust particles (DEP) and kmax = 0.009/day for experimental rats, calculate the expected clearance rate at

	m = 0.5 mg	E(k) =	[1]
	m = 5 mg.	E(k) =	[1]
d. Show your calculations, wit	h units, for 0.5 mg		[2]

e. Does the expected clearance E(k) change in the direction you expected, with increase in lung burden *m*? [no mark]

2. Using the expected value E(k) at a burden of m = 0.5 mg, complete a data equation for an observed value of k = 0.008