1. Stebbins (1950 Table 9) reported data from Reid and Reid (1915) on extinction rates in woody and herbaceous species of the early Pliocene in Northwestern Europe.

		Woody	Herbaceous	
	•	Nspecies	Nspecies	•
Modern species	N_s	25	31	
Modern genera	N_g	56	70	
Unidentified	$N_{_}unid$	13	22	
	Total	94	123	

Calculate

a.	Proportion of all	Woody plants th	nat belong to	modern genera.	p_W =	[1]
----	-------------------	-----------------	---------------	----------------	-------	-----

Proportion of all Herbaceous plants that belong to modern genera. $p_H =$ ____[1]

Odds of extinction of modern species where
$$Odds_W = p_W / (1 - p_W)$$

$$Odds_W =$$
____[1]

Odds_
$$H =$$
____[1]

Odds ratio:
$$OR = (Odds_W) / (Odd_H)$$

b. Mean extinction rate of modern genera
$$N_{\underline{g}}$$
.

$$mean(N_g) = __[1]$$

$$CV$$
= st.deviation/mean $CV(N_g) = 0.157$

$$\operatorname{st.deviation}(N_g) =$$
____[1]

$$t = (\text{mean - } \mu) / \text{st.deviation}$$

If
$$\mu = 0$$
, calculate t _____[1]

2.
$$1 \text{ acre} = 1 \text{ rod } X 1 \text{ furlong}$$

$$1 \text{ rod} = 22 \text{ yards}$$

$$1 \text{ furlong} = 220 \text{ yards}$$

m = 1.098 yards

$$0.742 \, acres =$$
 ______ yards² [1]

show your work [2]

$$0.742 \text{ acres} = \underline{\qquad} m^2 [1]$$

show your work [2]