1. Recapture rate of 487 marked scallops <i>Chlamys</i> along the same cruise track on St. Pierre Bank, sou MC = Catch (kg/tow). NC = Number caught (scallops/tow). RC = Recaptures (scallops/tow).	th of the Island of Tow MC	g 5 successive too of Newfoundland Cumulative NC RC 271 1	vs RC
a. Calculate the number of recaptures on *each* of the last three tows. [3]	1 21.79 2 20.22 3 19.97 4 20.27	260 20 258 20 256 28	0
b. What proportion of marked scallops were recaptured over the last 3 tows? [1] • • •		116 28 1161	0
c. A simple model of the relation of catch biomass (M = kg/tow) as a function of numbers caught (NC = scallops/tow) is:			
Write a data equation for the first tow. Tow 1 271	$-56.8 + 15.4 \text{ MC}$ = $\frac{278.77}{\text{Model}}$	+ - 7.760 + Residual	[3]
What units does the parameter 0.0642 have?	callop/kg		[1]
What units does the parameter 3.8 have?	callip/tou	<u> </u>	[1]
d. Complete the following table. [4]		NC at days	
e. State a null hypothesis concerning the first two and last two tows. [1]	Tows n 1+2 4+5	nean stdev 7.778 98.995	z Z
f. Show how you calculated the numerator of the 186-265.5 ov 265.5-1			sis. [1]
Show how you calculated the denominator of the		the null hypothes	sis. [2]
g. Report your t-statistic		t= /-13	[1]
circle the critical t-value to test your t-statistic at	alpha = 5%		[1]
df 1 citical t-value for two-tailed test, alpha = 5% 12.71 citical t-value for one-tailed test, alpha = 5% 6.31		4 1000 78 1.96 13 1.65	
h. Do the two means differ significantly?	1		[1]
No	Me		
	only		
for	full mark		

a Tace mask. a. Using subscripts with the symbol RE, define a symbol for exposed and for control groups. Using your symbolic notation, state a null (H _o) I work that the symbol is reported for two tailed? It is your test one-tailed or two tailed? State reason for this choice I i i i i i i i i i i i i i i i i i i	2. Xu <i>et al</i> (2004 Chin Med J (Engl) 11:1611-9) exposed rats to cigarette smoke daily for 3.5 months, then measured lung capacity (Re = expiratory resistance, cm $H_2O/l/second$) via					
b. Is your test one-tailed or two tailed? State reason for this choice C. For each conclusion below by Xu et al, state in words the null hypothesis, circle the decision with respect to the null, and circle the type of error for that decision. Number of alveoli unchanged Accept or Reject H _o Type I or Type II Reduction in dynamic compliance (C(dyn) H _o : Accept or Reject H _o Type I or Type II Type I	a symbol for exposed and for control groups.					
b. Is your test one-tailed or two tailed? State reason for this choice C. For each conclusion below by Xu et al, state in words the null hypothesis, circle the decision with respect to the null, and circle the type of error for that decision. Number of alveoli unchanged Accept or Reject H _o Type I or Type II Reduction in dynamic compliance (C(dyn) H _o : Accept or Reject H _o Type I or Type II Type I	Using your symbolic notation, state a null (H_o) 1 w $R_{esm} = Re_{esm}$ [1]					
c. For each conclusion below by Xu et al, state in words the null hypothesis, circle the decision with respect to the null, and circle the type of error for that decision. Number of alveoli unchanged	and research (H _A) hypothesis					
c. For each conclusion below by Xu et al, state in words the null hypothesis, circle the decision with respect to the null, and circle the type of error for that decision. Number of alveoli unchanged	b. Is your test one-tailed or two tailed? if both [1]					
c. For each conclusion below by Xu et al, state in words the null hypothesis, circle the decision with respect to the null, and circle the type of error for that decision. Number of alveoli unchanged	one tail is expect increau Re due to 5 mok-	ę				
Reduction in dynamic compliance (C(dyn) H _o : Accept or Reject H _o Type I or Type II [2] 3. In its 2014 report the Canadian Cancer Society's Advisory Committee on Cancer Statistics reported the age specific incidence rate (ASIR = number of new cases per 100,000 people per year) for melanoma (skin cancer) in Canada. b. Given the ASIR reported for women older than 65, calculate the expected number of new cases of melanoma in the province of Quebec, with 778,802 women in this age group in 2010. Report the expected number to the nearest whole number (integer).	c. For each conclusion below by Xu et al, state in words the null hypothesis, circle the					
3. In its 2014 report the Canadian Cancer Society's Advisory Committee on Cancer Statistics reported the age specific incidence rate (ASIR = number of new cases per 100,000 people per year) for melanoma (skin cancer) in Canada. b. Given the ASIR reported for women older than 65, calculate the expected number of new cases of melanoma in the province of Quebec, with 778,802 women in this age group in 2010. Report the expected number to the nearest whole number (integer).	Number of alveoli unchanged Accept or Reject H _o Type I or Type II [2]					
3. In its 2014 report the Canadian Cancer Society's Advisory Committee on Cancer Statistics reported the age specific incidence rate (ASIR = number of new cases per 100,000 people per year) for melanoma (skin cancer) in Canada. b. Given the ASIR reported for women older than 65, calculate the expected number of new cases of melanoma in the province of Quebec, with 778,802 women in this age group in 2010. Report the expected number to the nearest whole number (integer).	Reduction in dynamic compliance (C(dyn) H _o : Accept or Reject H _o Type I or Type II [2]					
new cases of melanoma in the province of Quebec, with 778,802 women in this age group in 2010. Report the expected number to the nearest whole number (integer).	3. In its 2014 report the Canadian Cancer Society's Advisory Committee on Cancer Statistics reported the age specific incidence rate (ASIR = number of new cases per 100,000 people) 1986 15-29 2.4 4.1 2010 15-29 1.8 3.8 3.8					
(ACID) / (100 000 ACID)	new cases of melanoma in the province of Quebec, with 778,802 women in this age group in 2010. Report the expected number to the nearest whole number (integer).					
16 16 20 36 011	(ACID) / (100 000 ACID)	5				
the odds of developing melanoma for women under 30 in 2010 [1] 3.8×10^{-1}	the odds of developing melanoma for women under 30 in 2010 $\frac{1}{2000}$ [1] $\frac{3.8 \times 10^{-2000}}{1000}$					
1000 OR 1781 111 0 077	the Odds ratio for women under 30 in 2010 compared to 1986 $OR = \frac{13331}{11} = \frac{1}{11} = \frac{1}{11$,				