Biology 4605/7220	NAME		
5 October 2015		Exam 1b	
1. Recapture rate of 487 marked scallops Ch along the same cruise track on St. Pierre Bar MC = Catch (kg/tow). NC = Number caugh	<i>lamys islandica</i> , during 5 suc k, south of the island of New	cessive tows foundland. Cumulative	
(scallops/tow). RC = Recaptures (scallops/to	ow). Tow MC NC 1 21.79 271	RC RC 1	
a. Calculate the number of recaptures on *each * of the last three tows. [3]	2 20.22 260 3 19.97 258 4 20.27 256	20 20 28	
b. What proportion of marked scallops were recaptured over the last 3 tows? [1]	5 11.3 116 Total 93.55 1161	28	
c. A simple model of the relation of catch bid (M = kg/tow) as a function of numbers caugh (NC = scallops/tow) is:	c = -56.8 + 15.4 MC		
Write a data equation for the first tow. Tow 1 Da	$\frac{1}{1000} + \frac{1}{10000000000000000000000000000000000$	[3] Residual	
What units does the parameter 0.0642 have		[1]	
What units does the parameter 3.8 have ?		[1]	
d. Complete the following table. [4]	N)	
e. State a null hypothesis concerning the first two and last two tows. [1]	Tows mean 1+2	stdev n 7.778 98.995	
f. Show how you calculated the numerator of	f the t-statistic to test the nu	ll hypothesis. [1]	
Show how you calculated the denominator o	f the t-statistic to test the nul	l hypothesis. [2]	
g. Report your t-statistic	t	= [1]	

circle the critical t-value to test your t-statistic at alpha = 5%[1] df 2 3 1000 1 4 citical t-value for two-tailed test, alpha = 5% citical t-value for one-tailed test, alpha = 5%12.71 4.30 2.78 1.96 3.18 6.31 2.92 2.35 2.13 1.65

h. Do the two means differ significantly?

[1]

2. Xu *et al* (2004 Chin Med J (Engl) 11:1611-9) exposed rats to cigarette smoke daily for 3.5 months, then measured lung capacity (Re = expiratory resistance, cm $H_2O/l/second$) via a face mask.

a. Using subscripts with the symbol RE, define a symbol for exposed and for control groups.	[1]
Using your symbolic notation, state a null (H _o)	[1]
and research (H_A) hypothesis	[1]
b. Is your test one-tailed or two tailed?	[1]
State reason for this choice	[1]

c. For each conclusion below by Xu *et al*, state in words the null hypothesis, circle the decision with respect to the null, and circle the type of error for that decision.

Number of alveoli unchanged Accept or Reject H_0	H_{o} : Type I or Type II				[1] [2]
Reduction in dynamic compliance Accept or Reject H_0	$(C(dyn) H_0: Type I or Type II)$				[1] [2]
3. In its 2014 report the Canadian Society's Advisory Committee on Statistics reported the age specific (ASIR = number of new cases per per year) for melanoma (skin canc	Cancer Cancer c incidence rate 100,000 people cer) in Canada.	Year 1986 2010 1986 2010	Ages 15-29 15-29 65 - 85+ 65 - 85+	Males 2.4 1.8 59.7 140.9	Females 4.1 3.8 38.4 70.6

b. Given the ASIR reported for women older than 65, calculate the expected <u>number</u> of new cases of melanoma in the province of Quebec, with 778,802 women in this age group in 2010. Report the expected number to the nearest whole number (integer).

[1]

c. The odds of developing melanoma are (ASIR) / (100,000 - ASIR)	
the odds of developing melanoma for women under 30 in 1986	[1]
the odds of developing melanoma for women under 30 in 2010	[1]
the Odds ratio for women under 30 in 2010 compared to 1986 $OR = $ _	[1]