\qquad

1. Recapture rate of 487 marked scallops Chlamys islandica, during 5 successive tows along the same cruise track on St. Pierre Bank, south of the island of Newfoundland.
MC = Catch (kg/tow). NC = Number caught (scallops/tow). RC = Recaptures (scallops/tow).
a. Calculate the number of recaptures on *each* of the first three tows.
b. What proportion of marked scallops were recaptured over the first 3 tows?

[3]	Tow	MC	NC
	1	21.79	271
	2	20.22	260
	3	19.97	258
[1]	4	20.27	256
	5	11.3	116
h biomass	Total	93.55	1161

Cumulative

	CumulativeRC
RC	
	1
	20
	20
	28
	28

c. A simple model of the relation of catch biomass

$$
\mathrm{MC}=3.8+0.0642 \mathrm{NC}
$$

Write a data equation for the first tow.

$$
\begin{equation*}
\text { Tow } 1 \longdiv { \text { Data } } = \overline { \text { Model } } \tag{3}
\end{equation*}
$$

$$
+
$$

$$
+ \text { Docidual }
$$

($\mathrm{M}=\mathrm{kg} /$ tow) as a function of numbers caught
($\mathrm{NC}=$ scallops/tow) is:

$$
\overline{\text { Data }}=\overline{\text { Model }}+\overline{\text { Residual }}
$$

What units does the parameter 3.8 have ?
d. Complete the following table. [4]
e. State a null hypothesis concerning the first two and last two tows.

f. Show how you calculated the numerator of the t-statistic to test the null hypothesis.

Show how you calculated the denominator of the t-statistic to test the null hypothesis.
g. Report your t-statistic

$$
\begin{equation*}
\mathrm{t}= \tag{1}
\end{equation*}
$$

\qquad
circle the critical t-value to test your t-statistic at alpha $=5 \%$

	df	1	2	3	4
	1000				
citical t -value for two-tailed test, alpha $=5 \%$	12.71	4.30	3.18	2.78	1.96
citical t-value for one-tailed test, alpha $=5 \%$	6.31	2.92	2.35	2.13	1.65

h. Do the two means differ significantly?
2. Xu et al (2004 Chin Med J (Engl) 11:1611-9) exposed rats to cigarette smoke daily for 3.5 months, then measured lung capacity ($\mathrm{FEV}=$ forced expiratory volume, $\mathrm{ml} /$ second) with a spirometer.
a. Using subscripts with the symbol FEV, define
a symbol for exposed and for control groups.
Using your symbolic notation, state a null $\left(\mathrm{H}_{\mathrm{o}}\right)$

and research $\left(\mathrm{H}_{\mathrm{A}}\right)$ hypothesis
b. Is your test one-tailed or two tailed?

State reason for this choice
c. For each conclusion below by Xu et al, state in words the null hypothesis, circle the decision with respect to the null, and circle the type of error for that decision.

$$
\begin{array}{cc}
\text { Decrease in dynamic compliance (C) (dyn) } & \mathrm{H}_{0} \text { : } \\
\text { Accept or Reject } \mathrm{H}_{0} & \text { Type I or Type II }
\end{array}
$$

Number of alveoli unchanged
H_{o} :
Accept or Reject $\mathrm{H}_{\mathrm{o}} \quad$ Type I or Type II
3. In its 2014 report the Canadian Cancer Society’s Advisory Committee on Cancer
Statistics reported the age specific incidence rate (ASIR = number of new cases per 100,000 people per year) for melanoma (skin cancer) in Canada.

Year	Ages	Males	Females
1986	$15-29$	2.4	4.1
2010	$15-29$	1.8	3.8
1986	$65-85+$	59.7	38.4
2010	$65-85+$	140.9	70.6

b. Given the ASIR reported for men older than 65, calculate the expected number of new cases of melanoma in the province of Quebec, with 627,117 men in this age group in 2010. Report the expected number to the nearest whole number (integer).
c. The odds of developing melanoma are (ASIR) / (100,000 - ASIR)

Calculate
the odds of developing melanoma for women under 30 in 1986
the odds of developing melanoma for women under 30 in 2010
the Odds ratio for women under 30 in 1986 compared to 2010 OR =

