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Part 1

Units and Dimensions

Table 1. Base and supplementary units in the SI system.

Quantity Unit Abbreviation
Length metre m
Mass kilogram kg
Time second s
Thermodynamic
temperature kelvin K
Amount of substance mole mol
Luminous intensity candela cd
Electrical current ampere A
Planar angle radian rad
Solid angle steradian st
Table 2. Standard multiples of ratio scale units.
Name  Multiple Abbreviation Example
pico 107" p pW
nano 1077 n nW
micro 10°° I uW
milli 107 m mW
centi 1072 c cW
deci 107! d dw
10° W
deca 10' da daW
hecto 10° h hW
kilo 10° k kW
mega 10° M MW
giga 10° G GW




Table 3. Units that commonly occur in biology.

Quantity Unit Unit Equivglent
Name Symbol Units
Acceleration angular rad-s 2
linear ms
Area square metre m’
hectare ha 10*m?
Concentration mol'm ™
Energy (work) joule J N'm
kilocalorie kcal 4185
Energy flux Jm s
Force newton N kg'm-s™
Frequency hertz Hz s
Light Luminance cd'm?
Luminous flux lumen Im cd-sr
Illuminance lux Ix Im'm >
footcandle fc 10.764-1x
Photon flux einstein E 1-mole
Mass density kg'm
Mass flow kg's
Mass flux kgm s
Power watt W Js!
Pressure (stress) pascal Pa Nm ™2
Surface tension N'm'!
Velocity angular rad-s™’
linear ms!
Viscosity dynamic Pas
kinematic m*s!
Volume cubic metre m’
litre 1 10 °m?
Volume flow rate m’s!
Wavelength m
Wavenumber m'




Table 4. Rules for working with dimensions.
From D.S. Riggs (1963) The Mathematical Approach to
Physiological Problems. MIT Press.

1. All terms in equation must have the same dimensions.
Terms separated by + - or =.
2. Multiplication and division must be consistent with rule 1.
3. Dimensions are independent of magnitude.
dx/dt is the ratio of infinitesimals,
but still has dimensions of x/t = Length/Time.
4. Pure numbers (e, m) have no dimensions.
Exponents and percentages have no dimensions.
5. Multiplication by a dimensionless number does not
change dimensions.

Working with Dimensions--Examples.

1. According to Holligan et al 1984 (Marine Ecology Progress Series 17:201) the vertical flux of
nutrients through the ocean's thermocline is:

F, = K, AN/AZ

were Fy is the vertical flux of nutrients (milligram-atoms m*s™")
K, is the vertical eddy diffusivity (10* m*s™")

AN is the nitrate difference across the thermocline (mg-atoms)
AZ is the thickness of the thermocline (metres)

Write out dimensions beneath each symbol in the equation.
Is this equation dimensionally homogeneous?

Work out the dimensions of AN required to make the equation homogeneous
Work out the units of AN required to make the equation homogeneous

M = Mass M L' = mass gradient
M L? = mass density M L™* = mass concentration

Based on this, AN must be the difference in nitrate across the thermocline.




More Examples with Units and Dimensions (continued)

2. A series of experimental measurements by Holligan et a/ suggest that the vertical flux of
nutrients through the thermocline follows an exponential relation:

Fy = a(Ky AN /AZ)*

What units does « have?

What dimensions does ¢« have?

3. Another series of experiments by Holligan et al suggest that nutrient flux depends upon the
temperature gradient across the thermocline.

Fy = B (AT/AZ) '?
AT/AZ = °C/metre

What units does [ have?

What dimensions does [ have?

Elementary statistics courses for biologists tend to lead to the use of a
stereotyped set of tests:

1 without critical attention to the underlying model involved;

2 without due regard to the precise distribution of sampling errors;

3 with little concern for the scale of measurement;

4 careless of dimensional homogeneity;

5 without considering the ideal transformation;

6 without any attempt at model simplification;

7 with too much emphasis on hypothesis testing and too little emphasis on
parameter estimation.

M.J. Crawley. 1993. GLIM for Ecologists. (London, Blackwell)



Euclidean and Fractal Dimensions in Biology -- References

Gunther, B. 1975. Dimensional analysis and the theory of biological similarity.
Physiological Reviews 55: 659-698.

Hastings, H. M. and G. Sugihara. 1993. Fractals: a User's Guide for the Natural
Sciences. Cambridge University Press.
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Freeman.
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Oxford University Press.

Platt, T.R. and W. Silvert. 1981. Ecology, physiology, allometry, and dimensionality.
Journal of Theoretical Biology 93: 855-860.

Schneider, D.C. 1994. Quantitative Ecology: Spatial and Temporal Scaling. San Diego:
Academic Press.

Stahl, W.R. 1961, 1962. Dimensional analysis in mathematical biology. Bulletin of
Mathematical Biophysics 23: 355-376, 24: 81-108.

Sugihara, G., B. Grenfell, and R.M. May. 1990. Applications of fractals in ecology.
Trends in Resereach in Ecology and Evolution. 5: 79-87.

<short, highly readable account, including how to estimate km®>

West, B.J. and A.L. Goldberger. 1987. Physiology in fractal dimensions. American
Scientist 75: 351-365.



Part II. The General Linear Model.
Notation for Frequency Distributions and Probability Functions.

There is no standard notation for frequency distributions and probability functions: the
notation will vary from text to text. Here are some notational conventions that tend to be widely
used. Equivalent notation is also shown.

An empirical distribution constructed from a sample of size n can be expressed in any of four

different ways:

F(Q=k) histogram of values frequencies

F(Q=k)/n  histogram of proportions relative frequencies

F(Q<k) histogram of cumulative values cumulative frequencies
F(Q<k)n  histogram of proportions cumulative relative frequencies

Theoretical distributions can be either discrete (binomial, Poisson) or continuous (normal,
chisquare, F, t). These are functional expressions. The probability density function pdf'is a
function for the probability, or relative frequency. The cumulative density function cdf is for the
cumulative probability, or cumulative frequency. These function can thus be considered models
for the frequency distribution obtained from data.

Observed
n = sample

Frequency  F(Q =k)
n-Pr(Q <k)
n-Pr(X <x)
N-Pr(Q <k)
N-Pr(X <x)

Relative

Frequency  F(Q=k)n
Pr(Q =)
Pr(X=x)

Cumulative

Frequency  F(Q<k)
n-Pr(Q<k)
n'Pr(X <x)
N-Pr(Q < k)
N-Pr(X <x)

Cum. Relative

Frequency  F(Q <k)n
Pr(Q <k)
Pr(X <x)

Expected k is discrete Q is measured
N = population X 1s continuous X is continuous
Frequency of Q in the sample of size n (the histogram)

Expected frequency that Q in sample, limited to k values
Expected frequency X in sample, X continuous
Expected frequency that Q in population, k values only
Expected frequency X in population, X continuous

Proportion of Q in the sample of size n
Probability that Q = k probability mass function, pmf
Probability that X = x probability density function, pdf

Cumulative frequency of Q

Expected frequency that Q<k in sample, limited to k values
Expected frequency X<x in sample, X continuous
Expected frequency that Q<k in population, k values only
Expected frequency X<x in population, X continuous

Proportion of Q <k in the sample of size n
Probability that Q <k cumulative mass function, cmf
Probability that X < x cumulative density function, cdf



Notation for Frequency Distributions and Probability Functions.

Equivalent notation Pr(Q =k)
Pr(X =x)
Pr(Q <k)
Pr(X <x)

f(x)
f(x)
F(x)
F(x)

pmf
pdf
cmf
cdf

P(Q=k) for discrete variables
P(X=x) for continuous
P(Q<k) for discrete variables
P(X <x) for continuous



Table 5. Key for choosing the frequency distribution of a statistic.

Statistic is the population mean
If data are normal or cluster around a central value

If sampleislarge m>30) ........ ... ... ... ... .... Normal distribution
Ifsampleissmall(n<30 ............ ... ... ... ... ....... t distribution
If data are Poisson . ............ i Poisson distribution
Ifdataare Binomial ............... ... . ... ... ....... Binomial distribution

If data do not cluster around central value, examine residuals (deviations
from the mean)
If residuals are normal or cluster around a central value

If sampleislarge(m>30) ........ ... .. .. .. .. ... .. Normal distribution
Ifsampleissmall (n<30) ........... ... ... ... ... ....... t distribution
If residuals arenotnormal ............................. Empirical (bootstrap)

Statistic is the population variance

If data are normal or cluster around a central value . .. ............... Chi-square
If data do not cluster around central value
If sampleislarge (n>30) ........ ... ... .. ... Chi-square
Ifsampleissmall(n<30 .......................... Empirical (bootstrap)

Statistic is the ratio of two variances (ANOVA tables)

If data are normal or cluster around a central value .. .............. F-distribution
If data do not cluster around a central value, calculate residuals
If residuals are normal or cluster around a central value ............ F-distribution
If residuals do not cluster around central values
If sampleislarge m>30) ....... ... ... .. . ... F-distribution
Ifsampleissmall (n<30) ........ ... ... .. .. . . ... Empirical

Statistic is none of the above
Search statistical literature for appropriate distribution
or confer with statistician
If not in literature or cannotbe found ................ ... ... ... .... Empirical

Empirical distributions are generated by taking all permutations, by sampling permutations, or by
subsampling (bootstrap methods).



Table 6. Generic recipe for calculating a confidence limit.

State population; state the statistic of interest.
Calculate an estimate of the statistic from data
Determine the distribution of the estimate.
State tolerance for Type I error.
Write a probability statement about the estimate or statistic.
Plug values into the statement to obtain confidence limits.
Make a statement about the probability that the line
(or limits) include the true value.
This statement is not about the statistic or estimate.

Nowuhkhwbd =

Strangely, the motto chosen by the founders of the Statistical Society in 1834
was Aliis exterendum, which means "Let others thrash it out." William Cochran
confessed that "it is a little embarrassing that statisticians started out by
proclaiming what they will not do."

E. A. Gehan and N. A. Lemak. 1995. Statistics in Medical Research:
Developments in Clinical Trials (Plenum Press).

Fisher's famous paper of 1922, which quantified information almost half a
century ago, may be taken as the fountainhead from which developed a flow of
statistical papers, soon to become a flood. This flood, as most floods, contains
flotsam much of which, unfortunately, has come to rest in many text books.
Everyone will have his own pet assortment of flotsam; mine include most of the
theory of significance testing, including multiple comparison tests, and non
parametric statistics.

John Nelder, Rothamsted Experimental Station. (Fisher's successor as Director
of the Statistics Department, and pioneer of generalised linear models). From:
Mathematical Models in Ecology, British Ecological Society Symposium 1971.



Table 7. Generic recipe for decision making with statistics.

State population, conditions for taking sample.
State the model or measure of pattern ................ ... ... ... .. ......
State Null Hypothesis about the population ...............................
State Alternative Hypothesis . ......... ... ... .. . . . ..
State criterion (tolerance) for Type lerror .......... ... ... ... ... ... ......
State frequency distribution that gives probability of outcomes when the
Null Hypothesis is true. Choices are:
Permutations, i.e. distribution of all possible outcomes when H, is true;
Empirical distribution obtained by random sampling of all possible
outcomes when H, is true;
Cumulative distribution function (cdf) that applies when H, is true;
State assumptions when using a cdf such as normal, F, t, or chisquare.
7. Calculate the statistic. This is the observed outcome.
8. Calculate the p-value for the observed outcome relative to distribution of outcomes
when H is true.
9. Ifp less than o then reject H, and accept H,
If p greater than o« then accept H,..
10. Report statistic, p-value, sample size.
Declare decision.

S

Equivalent method (less informative) based on just a statistical table, no computer

8. Calculate outcome corresponding to o

9. If observed outcome > outcome (@ o then reject H,, accept H,.
If observed outcome < outcome @ o then accept H,..

10. Report statistic, p-value, and sample size. Declare decision.

This latter method is less informative, because the observed p-value does not get reported.

This method was made necessary by the cumbersome tables for frequency distribution.
With modern computers it is possible to calculate an exact p-value for any statistic. The
method of reporting an exact p-value is preferred to the method based on tables.

10



Table 8 Generic Recipe for data analysis with the General Linear Model.

1. Construct model. Begin with verbal and graphical model.
Distinguish response from explanatory variables
Assign symbols, state units and type of measurement scale for each.
Write out statistical model.
2. Execute model Place data in model format, code model statement.
Compute fitted values from parameter estimates.
Compute residuals and plot against fitted values.
3. Evaluate the model, using residuals.
If straight line inappropriate, revise the model (back to step 1).
If errors not homogeneous, consider using generalized linear model (step 1)
If n small, evaluate assumptions for using chisquare, t, or F distribution.
residuals homogeneous ? (residual versus fit plot)
residuals independent ? (plot residuals versus residuals at lag 1)
residuals normal ? (histogram of residuals, quantile or normal score plot)
If not met, empirical distribution (by randomization) may be necessary
4. State population and whether the sample is representative
5. Decide on mode of inference. Is hypothesis testing appropriate?
If yes step 6, otherwise, skip to step 10.
6. State H/H, pair (some analyses may require several pairs).
State test statistic, its distribution (t or F), and tolerance of Type I error.
7. ANOVA: Partition df and SS according to model.
Table Source, SS, df, MS, F-ratio.
Type I error (p-value) from distribution(F or t).
8. Recompute p-value if necessary.
If assumptions not met compute better p-value by randomization if:
sample small (n < 30) and if p near «.
9. Declare decision about model terms: If p < o then reject H, and accept H,
If p > a then accept H, and reject H,,
Report conclusion with evidence: Either the ANOVA table or
F-ratio (df1,df2) or t-statistics (df) and p-value (not o) for terms of interest.
10. Report and interpret parameters of biological interest (means, slopes)
along with one measure of uncertainty (st. error, st. dev., or conf. intervals).
Use appropriate distribution (step 8) to compute confidence limits.

This is a modification of the Generic Recipe for Hypothesis testing.
The pattern is stated as an equation; the summary statistic is the F-ratio.
The equation links one or more response variables to one or more explanatory variables,
via parameters (means and slopes).
This equation is used to set up the ANOVA table, to partition the degrees of freedom, and to
partition the total sum of squares: SS,,,,, = (n-1) * Var(Y) = (n-1) * s’

For reports, use the methods section to:

state the critical value «;

state that the residuals were examined for normality, homogeneity, and independence;

state that randomization methods were used to compute Type I error, if assumptions were not
met.

11
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Correlation (stbx15_7.out)
Thorax length data from Box 15.7 in Sokal and Rohlf (1995), p 594.

MTB > read 'a:srbxl5 7.dat' cl c2;
SUBC> nobs = 15.
15 ROWS READ

MTB > name cl 'ltot' c2 'thor'
MTB > plot c2 cl

6.40+ *
— *
thor - * * * *
— *
— * *  x
5.60+ * *
4.80+
— *
— *
4.00+
——tm Fmm e ———— fmmm e ———— fmm e ——— e +----1ltot
6.0 7.2 8.4 9.6 10.8 12.0

MTB > plot cl c2

12.0+ *
— *
ltot - *
— *
10.0+ 2
— *
— * *
— *
8.0+ *
— *
- % * *
6.0+
—————— fmmmm e e e m e ———— =14t hOT
4.40 4.80 5.20 5.60 6.00 6.40

Total length of 15 aphid stem mothers and the mean thorax length of their parthenogenetic
offspring.

13




srtbx15 7.out

Judging from these graphs, a linear model of association did not look acceptable. The following
models were then investigated by transforming one or both variables, plotting, and examining the
plot to see if it was linear (no bowls or arches).

Itot log(Ithor)
log(lot) Ithor
log(Itot) log(Ithor)
Itot 1/1thor
Itot Ithor’

The last two were a slight improvement over the first three, but none of the plots could be viewed
as linear.

Next, try a model based on monotonic relation: thorax length increases monotonically with total
length. That is, variables are associated on a rank scale.

MTB > rank cl c3
MTB > rank c2 c4
MTB > name c3 'Rltot'
MTB > name c4 'Rthor'

MTB > plot c3 c4

15.0+ *
- *
Rltot - *
- *
10.0+
- *
- *
- *
- *
5.0+ *
- *
- *
- %
- *
0.0+
—————— tommmmmmm et ——————t—————————4Rthor
2.5 5.0 7.5 10.0 12.5 15.0

MTB > corr c3 c4

Correlation of Rltot and Rthor = 0.649

This is called the Spearman Rank correlation coefficient. It is a measure of monotonic relation.
It measures the linear relation between the ranks of the variables.

14



srtbx15 7.out

How does this measure of monotonic association compare with a measure of linear association?

MTB > corr cl c2 ml
Correlation of ltot and lthor = 0.650

This is the Pearson correlation, a measure of the linear association between the variables. In this
example, the measure of linear association turns out to be the same as the measure of monotonic

association.

So far 6 different models have been tried, none could be considered acceptable, based on lack of
bowls or arches in the residuals (deviations from line), as judged by eye. Perhaps the problem is
that the data are heterogeneous. There appears to be a positive relation, but some of the data
points do not conform to this relation. In particular, it seems that any thorax length is possible at
low total lengths (Itot <7 micrometer units). Let's assume that something different is happening
at low total lengths, and just examine the relation between variables when Itot > 7 micrometer

units.
MTB > let cl(5) = 0/0
MTB > let cl(5) = 0/0
J
*** VALUES OUT OF BOUNDS DURING OPERATION AT J
MTB > let cl1(8) = 0/0
MTB > let cl1(9) = 0/0
MTB > plot cl c2
ltot -
— *
— *
11.2+ *
— *
9.6+
— *
— * *
8.0+
— *
— *
—————— o4 —————————%] thor
5.60 5.76 5.92 6.08 6.24 6.40
N* = 3

This looks acceptably linear.

15




srtbx15 7.out

Now compute Pearson correlation, placing the coefficient into k1 for later use.

MTB > corr cl c2 ml
Correlation of ltot and lthor = 0.664

MTB > copy ml c3 c4
MTB > let k1l = c3(2)
MTB > print k1l

K1l 0.663741

Next compute t-statistic, with H_ that the true correlation is zero.

MTB > let k2 = kl*sqgrt((12-2)/(1-kl1**2))
MTB > print k2
K2 2.80620

Compute p-value from cumulative distribution function, for t distribution.

MTB > cdf k2;
SUBC> t 10.
2.8062 0.9907
MTB > let k3 = (1-.9907)*2
MTB > print k3
K3 0.0186000

Note multiplication by 2, the cumulative distribution function yields proportion of outcomes
smaller than t = 2.8062, which comes to 99.07% of the outcomes.

The right tail is thus approximately 1 - 0.9907 = 0.93% and both tails together comes to
approximately 1.8% (p = 0.0186 exactly).

Summary.

For non-linear (monotonic) model, use ranks. Compute rank correlation.
For linear model (relation described by straight line) use Pearson correlation.

16



Multivariate Analysis -- References

Cooley, W. W. and P. R. Lohnes (1971). Multivariate Data Analysis. Wiley & Sons, New York.
Gittens, R. Canonical Analysis. Biomathematics 12. Springer-Verlag, Berlin.
Ludwig, J. A. and J. F. Reynolds (1988). Statistical Ecology. Wiley & Sons, New York.

Kim, J. and C. W. Mueller (1978). Introduction to Factor Analysis. What it is and How to do it.
Sage Publications, London.

Morrison, D. F. (1976). Multivariate Statistical Methods. McGraw-Hill, New York.
Pielou, E. C. (1984). The Interpretation of Ecological Data. Wiley & Sons, New York.
Seal, H. L. (1964). Multivariate Statistical Analysis for Biologists. Methuen, London.

Van de Geer, J. P. (1971). Introduction to Multivariate Analysis for the Social Sciences. W. H.
Freeman, San Francisco.

Most statistical packages (such as SAS, BMDP, SYSTAT, SPSS) include references.

There are aspects of statistics other than its being intellectually difficult that
are barriers to learning. For one thing, statistics does not benefit from a
glamorous image that motivates students to persist through tedious and
frustrating lessons....there are no TV dramas with a good-looking
statistician playing the lead, and few mother's chests swell with pride as
they introduce their son or daughter as "the statistician."

C.T. Le and J.R. Boen. 1995. Health and Numbers: Basic Statistical
Methods. Wiley.

17



Autocorrelated Data -- References
Box, G. E. P. and G. H. Jenkins (1976). Time Series Analysis: Forecasting and Control. Holden-
Day, San Francisco.
<the basic text in time series analysis>
Cressie, N. A. C. (1991). Statistics for Spatial Data. John Wiley, New York
<extensive treatment of topic, fairly mathematical>
Diggle, P. J. (1983). Statistical Analysis of Spatial Point Patterns. Academic Press, London.
<somewhat mathematical, emphasizes use of randomization tests>

Griffith, D. A. (1987). Spatial Autocorrelation. Resource Publications in Geography, American
Society of Geographers.

<accessible treatment with examples>

Platt, T. and K. L. Denman (1975). Spectral analysis in ecology. Annual Review of Ecology and
Systematics 6: 189-210.

<reviews one technique: analysis in the frequency domain>
Ripley, B. D. (1981). Spatial Statistics. Academic Press, London.
<comprehensive coverage of topics, fairly mathematical>

Upton, G. J. and B. Fingleton (1985). Spatial Data Analysis by Example. Vol. 1. Point Pattern
and Quantitative Data. John Wiley & Sons, Chichester.

<highly accessible because of examples; short on conceptual linkages>

Most statistical packages (such as SAS, BMDP, SYSTAT, SPSS) include references.

18



GLM: Autocorrelated Data (codacf.out)
Cod (Gadus morhua) catch data.
Catches from the northwest Atlantic, NAFO division 2J3KL are divided into Canadian offshore,
other offshore, and inshore.
Total ... = Other + Can_,... Catches in tonnes = 10° kg.

MTB > read 'a:cod.dat' cl-c4;
SUBC> nobs = 30.
MTB > let cb = c3 - c2
MTB > name cl 'yr' c2 'other' c3 'totoff' c4 'inshore' c5 'canoff'
MTB > plot c4 cl
160000+ * *x

inshore -

— *
120000+ *
_ * K *
_ * % * *

— * * *

80000+ * * * X%

40000+ * *

1956.0 1962.0 1968.0 1974.0 1980.0 1986.0

Are the inshore catches serially correlated?

MTB > acf c4
ACF of inshore
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

i e et e e S
1 0.816 ),0:9.0:9:9:9:9.9:9.0:9.0:9.0:9.0:9:9:0:9:¢
2 0.636 ),0:9.0:9:9:9:9:0:9.0:9.0:9.0:9.0:¢
3 0.537 ).0:9.0:9.:9:9:9:9:9.0:9.0:9:¢
4 0.401 XAXKXXAXXXXXX
5 0.222 XAXXXXXX
6 0.074 XXX
7 -0.069 XXX
8 -0.170 XXKXKXX
9 -0.245 AXXXXXX
10 -0.299 XAXKXXXXX
11 -0.360 XXX XKXXKXXX
12 -0.360 XXX XKXXXXX
13 -0.343 XXX XKXXKXXX
14 -0.335 XAXKXXXXXX
15 -0.293 XAXXXXXX

19



codacf.out

Yes. Inshore catches are strongly correlated. r=+0.816 at lag of 1 year. This means that if
catches are high in one year, they will be high the year before or the year after. Catches
negatively correlated at lag of 11 years (r = -0.36).

What is best model to describe the relation? The two choices are moving average and
autoregressive. Moving average means that catch in any one year depends on combined effects
of several previous years. Autoregressive means that catch in any one year is related primarily to
effects during a fixed time previously.

The shape of the autocorrelation function suggests that this catch is best described as moving
average. Check this by computing the partial autocorrelation with PACF command

MTB > pacf c4
PACF of inshore
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
B st e e e s e e
1 0.816 ):9:9.0:0:9.9:9.9.9.0:0:9.9:9.9.9.0:0:0.0:¢
2 =-0.089 XXX
3 0.134 XXXX
4 -0.183 XXXXXX
5 -0.183 XXXXXX
6 -0.082 XXX
7 -0.160 XXXXX
8 0.028 XX
9 -0.052 XX
10 -0.010 X
11 -0.131 XXXX
12 0.057 XX
13 -0.063 XXX
14 -0.054 XX
15 0.047 XX

The shape of the partial autocorrelation function also indicates that catch is related to several
prior years (moving average) rather than to year at fixed time in past.

Conclusions:

Inshore catches strongly autocorrelated.
A moving average model is best guess for a statistical model.
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Next Analysis: Can inshore catches be predicted from offshore catches?

codacf.out

MTB > regress c4 1 c5;
SUBC> residuals c8.

The regression equation is
inshore = 95000 - 0.028 canoff

Predictor Coef Stdev t-ratio o)
Constant 95000 7851 12.10 0.000
canoff -0.0285 0.1338 -0.21 0.833
s = 32914 R-sgq = 0.2% R-sg(adj) = 0.0%

Analysis of Variance

R denotes an obs. with a large st. resid.

SOURCE DF SS MS F P

Regression 1 49014084 49014084 0.05 0.833

Error 28 30333534208 1083340544

Total 29 30382548992

Unusual Observations

Obs. canoff inshore Fit Stdev.Fit Residual St.Resid
1 4515 159492 94871 7477 64621 2.02R

Is this model acceptable? Check assumption A, linear relation.

MTB > plot c8 c¢c5

c8 -
: * Kk
50000+ *
— * K
: *2 *
_ * * 2
0+ * *
_ * * * * *
— * * *
_ * % *
-50000+ 2
- %
te——————— Fmm—————— Fmm—————— t——————— te——————— - canoff
0 25000 50000 75000 100000 125000

No bowls or arches, so linear model acceptable.
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codacf.out

Next, investigate the assumptions concerning errors.
B1 sum(errors) =0 ? Yes, because least squares used in regression.

B2 errors independent ?

The catches are strongly autocorrelated, so residuals are also likely to be autocorrelated. If the
residuals are autocorrelated, then p-values based on this model will be in error because the
residuals won't be independent.

MTB > acf c8 are residuals autocorrelated?
ACF of C8
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
e e e e s e S et e
1 0.815 ):0:0:0.9.9:9.9.9.9.9.9.9:0:0:0.0.0.0.0.0:4
2 0.636 AAXAXXXXKXXKXXXKXKXKXXKXX
3 0.536 AAXAXXXXKXKXKXKXXKXKXX
4 0.400 KX AXXXXXXKXXX
5 0.218 XAXXXXX
6 0.067 XXX
7 -0.082 XXX
8 -0.185 XX XXXX
9 -0.262 KX KXXXXXX
10 -0.318 ):9,9:9:0:0:0.0.0:¢
11 -0.381 ):9,9:9:9:0:0:0.0.0.0:¢
12 -0.381 ):9,9:9:9:0:0:0.0.0.0:¢
13 -0.362 KX KXKXKXKXXXXX
14 -0.351 KX KXKXKXKXXXXX
15 -0.303 XX KXXKXXXXX

The residuals are not independent. p-value cannot be trusted.

MTB > differences 1 c4 c6
MTB > name c6 'inshdl'
MTB > print c4 c6

ROW inshore inshdl

1 159492 * 16 35181 -6467
2 157286 -2206 17 41213 6032
3 119363 -37923 18 59939 18726
4 138511 19148 19 72623 12684
5 144548 6037 20 81455 8832
6 131328 -13220 21 85822 4367
7 110527 -20801 22 96523 10701
8 110843 316 23 80038 -16485
9 101859 -8984 24 113049 33011
10 101037 -822 25 106423 -6626
11 97224 -3813 26 97721 -8702
12 76588 -20636 27 79883 -17838
13 62539 -14049 28 72369 -7514
14 62052 -487 29 78747 6378
15 41648 -20404 30 101925 23178

To solve the problem take the differences from one year to the next, in the response variable
(inshore catch). Taking the difference usually reduces the autocorrelation.
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To check this, examine autocorrelation of the differenced variable.

codacf.out

MTB > acf co6
ACFEF of inshdl

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

e R Tt s

1 0.006 X

2 -0.003 X

3 -0.048 XX

4 0.099 XXX

5 -0.034 XX

6 0.171 XXXXX
7 -0.1l64 XXXXX

8 -0.061 XXX

9 -0.081 XXX
10 0.064 XXX
11 -0.072 XXX
12 0.066 XXX
13 0.058 XX
14 0.037 XX
15 -0.152 XXXXX

MTB > pacf cé6
PACF of inshdl

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

T T ettt

1 0.006 X

2 =-0.003 X

3 -0.048 XX

4 0.100 XXX

5 -0.036 XX

6 0.172 XXXXX
7 -0.168 XXXXX

8 -0.063 XXX

9 -0.065 XXX
10 0.021 XX
11 -0.039 XX
12 0.042 XX
13 0.129 XXXX
14 0.014 X
15 -0.144 XXXXX

Autocorrelation in response variable is usually reduced by taking differences.
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codacf.out

Now examine whether change in the inshore catch (inshore catch after differencing) is related to

offshore catch.

MTB > regress c6 1 cb;
SUBC> residuals c9.
The regression equation is inshdl = - 4333 + 0.0603 canoff
29 cases used 1 cases contain missing values (1956 lost from analysis)
Predictor Coef Stdev t-ratio o)
Constant -4333 3798 -1.14 0.264
canoff 0.06033 0.06364 0.95 0.352
s = 15509 R-sq = 3.2% R-sg(adj) = 0.0%
Analysis of Variance
SOURCE DF SS MS F P
Regression 1 216159680 216159680 0.90 0.352
Error 27 6493937152 240516192
Total 28 6710096896
Unusual Observations
Obs. canoff inshdl Fit Stdev.Fit Residual St.Resid
3 4676 -37923 -4051 3611 -33872 -2.25R
24 94457 33011 1366 4559 31645 2.13R
Check the residuals for autocorrelation.
MTB > acf c9
ACF of C9
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
it e s e et e e
1 -0.002 X
2 0.001 X
3 =0.070 XXX
4 0.051 XX
5 -0.103 XXXX
6 0.095 XXX
7 -0.224 AXXXXXX
8 -0.130 XXXX
9 -0.132 XXXX
10 0.031 XX
11 -0.090 XXX
12 0.077 XXX
13 0.095 XXX
14 0.094 XXX
15 -0.094 XXX

Residuals no longer autocorrelated for new model (based on differencing)

Conclusion: When we remove the autocorrelation present in the inshore catch series, we find

that the inshore catches are not related to offshore

catches.
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Numerical Methods. Finding the sample size (srex9 6.out)
Exercise 9.6 from Sokal and Rohlf (1995), page 268

What sample size should be used to be 80% certain of observing a true difference between two
means as small as a tenth of a millimeter, at the 5% level of significance?

First compute the error Mean square = 0.2496
This is better estimate than total variance = 25.6819/99 = 0.2594

MTB >
SUBC>
MTB >
SUBC>
MTB >
MTB >

read 'srex9 5.dat' cl-c5;
nobs=20.

stack cl-c5 co6;
subscripts c7.

name c6 'b lngth' c7
anova cb = c7

'grl

Analysis of Variance for b Ingth

Source DF SS MS F
gr 4 1.9734 0.4933 1.98
Error 95 23.7085 0.2496

Total 99 25.6819

0.104

n = unknown
o” estimated as s> = 0.2496 (see above)
6=0.10 and 6*=0.01

v=a(n-1)
a=5%
P =80%

match cdf computations in Minitab to t-values for example in Box 9.14 page 263

tyi0sop = 0-847 in text, for v=4(20-1) =76

MTB >
SUBC>
0.
MTB >
SUBC>
0.
MTB >
SUBC>
0.
MTB >
SUBC>
0

invedf .01;

t 76.

0100 -2.3764
invedf .005;

t 76.

0050 -2.6421
invedf .4;

t 76.

4000 -0.2542
invedf .2;

t 76.

.2000 -0.8464
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SREx9 6.out

Use 0.005 and 0.20 for box 9.14 therefore use 0.025 and 0.20 for exercise 9.6

Compute k1 =2(0/8)>

MTB > let kl = 2*(0.2496)/(0.01)

38

Guess n = 20, hence v =2%(20-1) =

MTB >
SUBC>
MTB >
SUBC>
MTB >
MTB >
K1l
K2
K3
K4

invedf 0.025 k2;
t 38.

invedf 0.2 k3;

t 38.

let k4 = k1*(k2 + k3)**2 <n

print k1 k2 k3 k4
49.9200
-2.02439
-0.851178
412.782 <n

t value stored into k2
t value stored into k3

<n inBox9.14

Both t-values are negative, the
sum becomes positive when
squared.

MTB >
SUBC>
MTB >
SUBC>
MTB >
MTB >
K2
K3
K4

invedf 0.025 k2;

t 822.

invedf 0.2 k3;

t 822.

let k4 = kl1* (k2 + k3)**2

print k2 k3 k4
-1.96285
-0.842055
392.745

IA
s

Guessn=412
hence v = 822

MTB >
SUBC>
MTB >
SUBC>
MTB >
MTB >
K4

K3

K2

MTB >

invedf .025 k2;
t 782.
invedf .2 k3;
t 782.
let k4 = k1* (k2 + k3)**2
print k4 k3 k2
392.804 = n
-0.842103
-1.96301
stop

Guess n =392
hence v =782

No change from last iteration
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Sample size is n = 392 for stated
power and Type I error (= 5%).



