
Name _________________

Laboratory #11.  

Bootstrap Estimates

Randomization methods so far have been used to compute p-values for hypothesis testing.

Randomization methods can also be used to place confidence limits around estimates.

Randomization methods can be used to place a confidence limit around any statistic, not just those

that have known statistical distributions.  As can be seen by referring to the key for choosing a

frequency distribution (see Handouts), randomization methods using the "bootstrap" method are

especially useful when errors around an estimate are not normally distributed, or when the statistical

distribution for a statistic is unknown.

The bootstrap is a technique for estimating a statistic and its distribution.  It uses resampling.  The

resampling for randomization tests (Lab 4) was carried out WITHOUT replacement.  The values of

the response variable (in Minitab column c1, for example) were sampled without replacement into

a new arrangement (in Minitab column c2, for example).  Each value in the first arrangement (c1)

occurs only once in the second (c2).  The advantage of repeated sampling and calculation, of course,

was that a statistical analysis could be undertaken without making assumptions about the distribution

of outcomes.

Bootstrap methods use sampling WITH replacement.  That is, any individual observation in one

column can be sampled repeatedly.  Any single observation in column c1 can appear repeatedly in

c2.  Or it may not appear at all in c2.

The bootstrap was invented by Bradley Efron (Annals of Statistics 7:1-26).  It is described in Manly

(1991: Randomization and Monte Carlo Methods in Biology Chapman Hall).  

 The purpose of this lab is:

6 to describe the bootstrap

6 to show how to compute a bootstrap estimate using Minitab

6 to show how to devise an accurate computational procedure in Minitab.

To complete this lab, you will need a package that returns a random sample of values from a column

of data.  Most statistical packages will do this.  The basic version of commercially available

spreadsheets do not have functions to do this directly.

 

You will also need a statistical package or spreadsheet that will execute a command repeatedly in

order to accumulate the values of a statistic from repeated runs into a single column.  This can be

done readily with line code commands.  It is hard to execute a batch file from a graphics interface.
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Example:   Mandible lengths of male golden jackals (Manly 1991)

Q = [ 120  107  110  116  114  111  113  117  114  112 ]  @ mm

The Bootstrap.

The idea behind the bootstrap is simple.  A sample of n values of a variable quantity Q = Q1,

Q2, ..., Qn is taken from a population and used to estimate some parameter, such as the mean of the

population, or the skewness of the population.  The true value of the parameter can never be known

exactly unless the entire population is sampled, but of course the parameter can be estimated from

the n observations.  The sampling variation in this estimate is assessed by taking random samples

of size n.   This collection of random samples of size n can be as large as we like.  We are going to

regard this observed distribution as the best approximation of the true distribution of all possible

samples from the population.

The samples that make up this approximate distribution of Q are called bootstrap samples.

Each sample is used to make a bootstrap estimate of the true parameter (mean, slope, variance,

diversity index, etc).  The distribution of these bootstrap estimates, which we require for hypothesis

testing and stating confidence limits, can be obtained by repeated sampling and then constructing

an observed frequency distribution.  

The observed mean value is mean(Q) = 114.3 mm.  This is an estimate of a parameter, the true mean.

To demonstrate how bootstrap estimates work we will  to obtain a bootstrap estimate of the mean.

This will be done by taking 10 samples (WITH replacement) from the collection of 10 observations,

computing the mean from each sample, and then collecting 500 of these estimates.

To do this, we will use Minitab to sample WITH replacement.

The next page shows a series of steps for determining how to accomplish this in Minitab.
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1.  State the computation, in words.

2.  Find a set of commands in your package to execute the procedure

3.  Check the commands with a sample set of made-up data.

4.  If it is not correct, look for another set of commands.

5.  Repeat until a correct procedure is found.

Table 11.1. Generic recipe for devising computational procedure in any statistical package.

MTB > Help Commands

MTB > Help commands 15

E

MTB > set into c1
DATA>   3 4 5 6 7 8
DATA>  end

Name ___________________

Step 1. State the computation.      sample with replacement from c1 into c2   

Step 2. Use the help file in your package to find the commands.

You may need to choose a  collection of commands:

Which command are you going to use to sample with replacement from c1 into c2?

___________________________________________________

Now display the help file for this command.

Step 3. Next, see if this command works on a small data set.  

Put some data into a column for a test run.  
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Example:   Mandible lengths of male golden jackals (Manly 1991)

Q = [ 120  107  110  116  114  111  113  117  114  112 ]  @ mm

If you sample from c1 into c2 with replacement, what do expect to see in c2?   (this will be marked

as present absent, not on whether it is correct)

______________________________________________________

Now execute the command to sample from c1 into c2.  Then display c1 c2.

You should see some of the numbers in c1 several times in c2.  You should also see that some

numbers from c1 are missing from c2.   If this is not happening, the computational procedure is

probably not correct.

Step 4.  If it is not correct, look for another set of commands.

Step 5.  Repeat until an accurate procedure is found.

* * *

Bootstrap estimates.  Mean mandible lengths of golden jackals.

Now that we have a computational procedure for sampling with replacement, we can move

on to making bootstrap estimates of a statistic.

The first statistic will be the mean for mandible lengths of male golden jackals.

Set these 10 observations into column 1 of your statistical spreadsheet

Define Data

from keyboard

Next, place a random sample of 10 observations from c1 into c2.
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MTB > Store ‘Jackal.ctl’
STOR>

Name ______________________

Next, calculate the mean value of the random sample in c2 and store this in k1.  

You may need to use the help facility to do this.  

 The mean in c1 and c2 should differ slightly.

Next, store your bootstrap estimate of the difference in two means at the top of column 3 

You may need the help facility.

Once you have several values (random means) in column c3, write a batch file to add a bootstrap

estimate to column 3 every time you execute the file.

Create

control file

Make sure the batch file is adding a new and slight different estimate to c3 each time the batch file

is executed.

Once the batch file is working correctly, then Tape, paste, or write out by hand the batch file:
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MTB > n c3

Bootstrap estimates.  Confidence intervals. Name__________________________

Now accumulate 500 bootstrap estimates of the mean in c3.

To make sure you have 500 observations

Compute the mean value of the bootstrap estimates. ___________

How does this compare to the estimate of 113.4?  _________

A bootstrap estimate of a mean is hardly necessary because simply taking the sum and dividing by

the number of observations will produce a perfectly good estimate.  But what about the confidence

limits around the mean?   A theoretical distribution may not be available for obtaining a confidence

limit, in which case a bootstrap estimate of the confidence limits will be useful.

You will recall that the confidence limit is a range around an estimate that will include the true value

of the parameter 95% of the time (or 99% of the time, or whatever).

To obtain a rough idea of the 95% confidence limits around the bootstrap estimate of the mean,

construct a histogram of the bootstrap estimates in c3.

Tape or paste your histogram here
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MTB > describe c1  
      N     MEAN   MEDIAN   TRMEAN    STDEV   SEMEAN 
C1   10   113.40   113.50   113.37     3.72     1.18 

MTB > invcdf .95; 
SUBC> t 9. 
     0.9500    1.8331

Name ________________

Based on this histogram, make a rough guess and write out the upper and lower limits that include

95% of the bootstrap estimates (answer does not have to be exact).

Upper limit = _______________ mm

Lower limit = _______________ mm

Next, try to think of a way to determine the 95% limits exactly, from the 500 bootstrap estimates in

c3 (this will be marked as present/absent not on whether it is correct). 

There are several ways of computing the 95% limits exactly for the 500 bootstrap estimates in c3.

One is to use the percentile function found in many packages, including spreadsheets.

Another is to use the sort function, found in almost all packages.

With the sort function you will need to count downward in the sorted column, to reach the value for

which 2.5% of the values are smaller.  .  You will then need to count upward in the column to reach

the value for which 2.5% of the values are larger.

Try the percentile  method.  If you package does not make the computation, try the sort method.

Compute the upper and lower limits that include 95% of the bootstrap estimates.  

Upper limit = _______________ mm

Lower limit = _______________ mm

Now compute then compare these bootstrap estimates of the 95% confidence limits to the theoretical

limits using the t-distribution.   Here are the computations:

What is wrong with this invcdf command wrong?  ____________________________
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MTB > invcdf .975;
SUBC> t 9. 
     0.9750    2.2622

MTB > let k1 = 113.4 - 2.2622*stdev(c1)/sqrt(10)
MTB > let k2 = 113.4 + 2.2622*stdev(c1)/sqrt(10)
MTB > print k1 k2
 
K1       110.740
K2       116.060

Name ________________________

Now compute the theoretically based upper and lower limits using:  the mean, the standard deviation,

sample number n, and the t-statistic:

Write up for this laboratory:

1. Work through the bootstrap example  shown above, filling in all of the blanks.

2. Use bootstrap methods to set 95% confidence limits on the proportion of ants in the

diet of short-horned lizards Phrynosoma douglassi brevirostre, from near Bow

Island, Alberta during the month of June (data from Manly 1991 p 247).   Use 1000

bootstrap estimates to obtain a good estimate of the upper and lower limits.

p = [ 33  100  43  100  14  64  40  0.0  47 ] @ %

Upper limit = _______________ mm

Lower limit = _______________ mm

Compute the upper and lower limit 95% confidence limits using a t-distribution.

Upper limit = _______________ mm

Lower limit = _______________ mm

 Should you report the first or the second pair of confidence intervals in a thesis or other

document?  Why?


