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  Relation to GLM
  Strategy and tactics
  Examples
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Add more examples that
focus on interpreting
axes.

Today: Multivariate Analysis

Lecture Notes in Quantitative Biology
Multivariate Analysis -- Combining Variables

Chapter 20.4 (from 30 November and 2 December 1993)
Revised 26 November 1997

ReCap.   EDA is a combination of graphical and
formal analysis with the goal of discovering the "best" model.  

EDA and inference.  The inference from the model to a larger population is much
looser than in formal statistical inference.  EDA is iterative. It uses a screening
criterion rather than a significance level "

Execution.  Elements of good quantitative analysis still apply.
  Define all quantities that are used
  Identify response and explanatory variables.
  Decide whether to undertake exploratory or confirmatory analysis,
    state reasons, use screening criterion or significance level, as appropriate.
  Box and arrow diagrams useful.

Correlation measures the relation of two variables.  There are two response
variables, which are related to a single (fabricated) explanatory variable.
We can extend this to more than two response variables.

Multivariate techniques combine variables, simplification to bring out pattern.
Procedure is 
  Define quantities.
  Identify response and explanatory variables.
  State rationale for exploratory analysis.
  Reduce set of response variables to unobserved variables (factors).
  Quantify the fit of data to model.
  Interpret the axes.
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EDA  Combining variables with Multivariate analysis.

Biological systems are complex.  Understanding requires skilful summarization,
when data sets consist of many measurements on many quantities.   Examples:

Wisconsin trees.
Skeletal measurements on many bones.

Verbal models are usually the first step in simplification, but these are difficult to
develop for complex data sets with many variables.  

Graphs are also limited.  It is difficult to display more then 3 variables in one
graph.  Graphs of 2 or 3 quantities can be used to visualize the information, but the
number of such graphs becomes too many for data sets with many quantities.  For
10 quantities, the number of XY plots will be 10!/(2! 8!) = 45.
  
Formal models are a potentially powerful way of summarizing information.  But
these are often so far removed from the data that it becomes difficult to pick out
pattern.  

An effective solution is to combine graphical methods with summary statistics.

Multivariate analysis is a combination of logic, numerical summarization, and
graphical display to extract pattern from a large number of quantities, measured
across multiple cases.  The basic technique is to combine quantities to create new
quantities.  The new quantities are weighted combinations of the original set of
quantities.  We have already seen a simple example.  Correlation analysis
combines two quantities to create a new (unobserved) quantity.  

A large number of statistical techniques, most of them exploratory in aim, go under
the name of "multivariate analysis."  Nearly all have three things in common. 
There are two or more response variables, there are usually no explanatory
variables, and they use eigen analysis to compute new axes, which are then
interpreted.  Examples of multivariate analysis are
  Principal components analysis
  Principal coordinate analysis
  Factor analysis
  Canonical correlation
  Multidimensional scaling (uses ranks)

Multivariate techniques based on eigen analysis are sometimes called canonical
analyses (not the same as canonical correlation)
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Relation to GLM

Multivariate methods are related to the linear modelling techniques already
learned.  To show the relation, we need to distinguish among sets of variables. 
Boldface type designates a matrix consisting of columns (variables) and rows
(cases).  Three different kinds of sets

Y  a set of observed response variables.
X  a set of observed explanatory variables.
F  a set of unobserved explanatory variables.
|  separate response | from explanatory variables.

GLM - regression [ Y | X ]  one response
case   .    .. one or more explanatory on ratio scale
case   .    ..
case   .    ..

GLM - ANOVA [ Y | X ]    one response
case   .    .. one or more explanatory on nominal scale
case   .    ..
case   .    ..

GLM - ANCOVA [ Y | X ]  one response
case   .    .. one or more explanatory on ratio scale
case   .    .. one or more explanatory on nominal scale
case   .    ..

GLM - MANOVA [ Y | X ] two or more response variables
case   ..   .. one or more explanatory on nominal scale
case   ..   ..
case   ..   ..

GLM - MANCOVA [ Y | X ] two or more response variables
case   ..   .. one or more explanatory on nominal scale
case   ..   .. one or more explanatory on ratio scale
case   ..   ..
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Relation to GLM  (continued)

Eigen analysis is used to compute new or unobserved explanatory variables.
These are computed, and then added to the matrix.

Correlation [ Y | F ] two or more response variables
case   ..   . one unobserved explanatory variable F
case   ..   .
case   .    .

Discriminant [ Y | X  F ] two (rarely more) response variables
  analysis case   ..   0    . one observed explanatory variable X

case   ..   0    . one unobserved explanatory variable
case   ..   0    .
case   ..   1    .
case   ..   1    .

F is constructed so as to predict X from measurements of Y

Principal components [ Y | F ] three or more response variables
  analysis case   ..   .. two or more unobserved explantory

case   ..   ..
case   ..   ..

Factor analysis [ Y | F ] three or more response variables
case   ..   .. two or more unobserved explantory
case   ..   ..
case   ..   ..

Same as principal components, except uses different set of rules to
construct Factor matrix.
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Cluster analysis [ Y1 Y2 Y3 Y4 Y5 Y6 .. ]  many response variables.
case . . . . .
case . . . . .
case . . . . .
case . . . . .

Draw Figures 9.1 thru 9.8 of Van de Geer p90
on board.
to label these figures, use
Y1 ...  Y6   and F1 ... F4

Fig Van de Geer
L28a 9.1
L28b 9.2
L28c 9.3
L28d 9.4
L28e 9.5
L28f 9.6
L28g 9.7
L28h 9.8

Relation to GLM  (continued)

Canonical correlation [ YA1 | FA1 ] three or more response variables
case   ..   .. two or more unobserved explantory
case   ..   ..
case   ..   ..

[ YB1 | FB1 ] three or more response variables
case   ..   .. two or more unobserved explantory
case   ..   ..
case   ..   ..

[ FA1 FB1 | F2 ]

Two sets of factors are correlated with each other via F2

Draw dendritic pattern to the left, connecting cases in hierarchical fashion.
No explanatory variables.  Response variables grouped according to similarity
across variables.

The following diagrams from Van de
Geer show the relation between the
multivariate methods described in that
book.
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Multivariate Analysis.  Strategy
  1.  Define quantities
  2.  Separate response and explanatory  (box and arrow diagrams help)
  3.  State reason for exploratory approach (rather then confirmatory
  4.  Decide on technique  (specific procedures, screening criteria, etc)
  5.  Execute the analysis.

a.  Form matrix of variables (columns) and cases (rows)
symbols  Y = observed response variables

           X = observed explanatory variables
               not known in canonical analysis.  Instead use:

           F = unobserved explanatory variables
           b = set of parameters relating Y to F
           E = residual, or unique, or unexplained variance.
b.  Reduce the variables (Y) to smaller number of factors F 

(unobserved variables)
c.  Examine degree of reduction  (variance explained in statistical sense)

  6.  Interpret the axes in terms of 
         -variables Y
         -cases

Tactics.  Explained in detail in texts 
See list of refence books in Handout  Mvar.ref

  5b. Reduce the variables Y to fewer axes F.  Variety of techniques available
   Canonical methods-use linear algebra to obtain "best" axes according to 

minimization criteria.  There are several 
least dispersion from axis
capture the most variance

Several names for Canonical Analysis, each referring to diffent
       tactics.

Principle coordinates (includes "Factor analysis")
Principle components

simple correlation is a special case of Canonical Analysis

   5c.  Degree of reduction.  Several criteria,  many related to 
          concept of explained variance.
          How much by first axis, by second axis ?
          Rate of increase in explained variance by adding new axis
    6. Interpret axes.  Rotations and other methods to bring out pattern
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Tips on execution
   cross-validation of packages.
   cross validation against known cases-is this package
             doing what I think it is doing ?
   matrix check sometimes possible, computations can be written
     as a series of matrix equations.  NTSYS of Rohlf etc is
     an interesting hybrid of black box and matrix approach
   concordance of symbols
     Plethora of confusing notation.
   Eg van de Geer:  
      X = Y F' + E   X=observed
                     Y=scores or hypothetical variable
                     F'=loading (parameters)
     better to introduce new symbol for unexplained,  call this F
     try to adhere to following notational conventions:
         Y = response variable, observed
         X = explanatory variable, observed
         F = explanatory variable, unobserved
         " ß etc = parameters.
         E = residual, or unique, or unexplained variance

Leads to problems in carrying through an analysis.
  Is this the same thing that Smith (1950) did ?
  Solutions are to 
    develop concordance of symbols, 
    develop equivalences in naming (find synonymies and subsets)
       1.  Reduce dimensions [?] [Y] = [F]
               "Principle Component Analysis"
        2. Find set of composite variables.
               "Principle Coordinate Analysis"
                         includes "factor analysis"

    cross-verification through computation. 
       Compare results from different packages for example.
       Compare results to known or textbook examples. 
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Work through several examples, using steps 1-6 listed above.
Focus on interpretation of axes, rather than execution.

I.  Data from intertidal zone on
      Wave energy E, Env. temperature T, Food Intake I,
      Growth rate G, and per capita fecundity ro

    Assign ro to Y matrix, others to X, do multiple regression
    
    Re-do as path analysis.  Emphasizing use of logical relations
       to simplify the diagram.

II. Morphometric data on bones.  

      Set up as factor analysis.
        First factor is size, second factor is shape.

III.  Data on abundance in of 8 species of tree in 10 plots.

      Set up as factor analysis

IV.  Data on abundance of seals hauled out on rocks at 3 location
       with measurements of tide stage, wind speed,
         air temperature, sky cover, wave intensity, and
         disturbance at each location.
      
        Set up as canonical correlation, show loadings on
             first two canonical variates, with interpretation.

V.  Amoco Cadiz, effects of oil spill.  From Clarke 1993     
Fig L28i = Fig 3 in Clarke 

A good example, axes are readily interpreted.
No need to interpret factors in terms of loadings, as is usually the case for 

multivariate analysis.

1. Define quantities.
2. Identify explanatory and response variables.

Box and arrow diagram
3. Rationale for exploratory analysis.
4. Criterion and Procedure
5. Execution
6. Interpret axes.  Report results 
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Steps.  (from 1990).  Puts too much emphasis on execution,
                       but not enough detail for execution of analyses.
 1. Data
 2. Label variables, using mnemonic symbols.
 3. Assign variables to a matrix
        Y = observed response variable
        X = observed explanatory variable
        F = unobserved explanatory variable
 4. Draw box and arrow diagram of relation of variables.
 5. Correlation matrix of variance/covariance matrix of Y
      Typically based on columns called variables.
      But in some cases the rows can be considered 
        variables, and then the matrix can be transposed
        to analyze rows as variables
          (former columns are now cases) Horrible jargon Q R 
 6. Extract F matrix (and parameters lambda) from Y matrix
     Constraints and assumptions needed here.
     Commonest rules are
       that F variables explain maximum variance.
       that F variables are not correlated with each other.
     Show this graphically by  drawing cloud of point on plane,
      fitting line, rotating to explain max variance, then
      fitting second line at right angles,
      this lie to explain max residuals
 7. Reduce dimensions of F according to some rule.  For example
     the first 2 dimensions extracted often explain most of the
     variance in a data set. 
 8. Plot variables or cases against F.  Several methods available
     here. Common ones are to
        plot column of Y as score on new axes F
        plot each row as a correlation with new axes F
 9. Interpret reduced set of variables F.
      Label points.
      Interpret axes F relative to columns, relative to rows.
      Look for separation, examine identity of end points on F
      Look for groupings and interpret.
      Look for patterns such as arches.   These may need to
        be extracted.  Seasonal trends, for example produce
        arches because they are not monotonic


