Lecture Notes in Quantitative Biology
Autocorrelation. Autoregression
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Autocorrelation.
Introduction.

Autocorrelated data often encountered in environmental biology
Example: Counts of plants in adjacent quadrats.
If count high in a quadrat, count in neighbor likely to be high.
If count low, count in neighbor likely to be low.
Autocorrelated data often in laboratory work.
Example: Behaviour of pigeon on successive trials.

Wrap-up.

Autocorrelated data has become increasingly common in biology, due largely to
automated recording of data, taken at high temporal resolution (measurements
close together in time) or at high spatial resolution (measurements taken close
together in space).

Autocorrelation can be quantified either relative to separation or frequency of
measurement. Models of autorcorrelation can also be developed.
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Autocorrelation

The basic idea behind autocorrelation is that if we take a series of measurements in
time or space, then we often expect an observation to be related in some way to the
immediately preceding observation. For example, if we take a series of
measurements of photosynthetically active radiation (PAR) reaching the forest
floor, we will find that the measurements are autocorrelated. If a lot of light is
reaching the forest floor during the present hour, then on average we expect a lot of
light to reach the forest floor during the next succeeding hour. The factors
responsible for this are many: day-night variation in light levels, variation due to
clouds brought in by weather systems, and seasonal variation in light levels.
Similarly, if we measure the amount of chlorophyll within adjacent quadrats up
a mountain, we will expect the amount of chlorophyll in any one quadrat to be
related to its neighbors, rather than being completely independent. Again, many
factors are responsible for this: reduction of plant biomass in areas of steep slope,
reduction in biomass due to landslides, reduction in plant biomass at high altitudes.

Autocorrelated data is a frequent problem in biology.
Measurements are often taken in a temporal sequence,
with one measurement being correlated with the prior measurement.
Similarly, measurements in space can be correlated, especially
over short distances.

Autocorrelated data is becoming more frequent. This is due to automated
collection of data. For example, hourly measurements of PAR were not possible
over extended periods of time until the development of digital recording devices to
automatically store PAR readings. Chlorophyll amount per hectare in a series of
adjacent hectares up a mountain was not possible until the advent of satellite
imagery.

The topic is typically not covered by introductory texts, despite its frequency in
biological data sets. There are many specialized books. The handout (serial.ref)
lists several texts, ranging from the highly mathematical to more accessible.

The analysis of autocorrelated data can be elaborate, as is evident from some of
these books. The purpose of this lecture is to

introduce the concept,

show how to recognize autocorrelation in its various forms

show how to identify and remove the effects of autocorrelation
from an analysis
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Time series. Spatial series
As always, we are working with defined quantities. Here are two examples.

Catch of fish (cod) over a series of years.
Y, = total landings in year t
Units are metric tonnes per year from a specific area off Newfoundland

For a number of reasons we expect Y,,, to be related to Y, but not vice versa.
Catches depend on investment in boats and equipment, which changes at the scale
of years. If catch is small this year due to small investment in equipment, then it
will not suddenly quadruple the next year. Similarly, if there are large numbers of
people catching fish, this will not normally change very much from one year to the
next.

The handout shows a graph of inshore catches over a period of 30 years. The
graph shows clear trends. It is evident that the catch in any one year is related to
the catch in the previous year, on average. The difference in catch between
successive years is, on average, less than the difference over many years.

820

: : 1178

Here is spatial example. 876

887

N, = number of Gem clams, Gemma gemma, in 18 core samples 675

collected at 2 m intervals along a straight line across an intertidal sand 651

flat. 829

851

Units are number of clams per 10 cm diameter core, taken to depth of 10 2%

cm into the substrate. 1100

822

Graph shows trends in density along the transect. As with the temporal 1165

series, the difference between adjacent samples is on average less than the| 957

difference between samples at greater separations. Another way of ﬂgi

looking at this is that the density is on average higher at one end of the 1073

transect than at the other. 1130
This can be extended to two spatial dimensions N,, or even to three N, ,.
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Separation vs frequency

There are a number of statistics for quantifying the degree of association in serial
data. These statistics are expressed either in term of separation, or in terms of
frequency.

Separation. Also called distance specification.

What is the average change in catch, from one year to the next ?
To compute this we compute Y, - Y, through the series, sum these values, and
take the average. For the fish catch data, the average difference at lag 1 is:

D1 = ntXY,-Y,, = -1985

Similarly, what is the average change in catch at separations of two, three and four
years ?

b2 = n'3Y,-Y,, = -4861
DB) = n'2Y,-Y,, = -6781
D4 = n'3Y,-Y, = -9297
etc

This shows that on average, catches have declined more than they have increase,
and that this decline grows larger with increasing time scale (lag).

Those who have taken calculus will recognize the operations here as similar to
taking a differential. If we have a function that describes speed at any point in
time, then we can use differential calculus to obtain the change in speed (the
deceleration) from one point in time to another.
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Separation vs frequency (continued)

Frequency. Also called interval specification.

The same information that was expressed as a function of separation can also
be expressed as a function of frequency of measurement. For the fish catches, we
again start with the average differences from year to year.

D(30/30) = ntXY,-Y, = -1985 tonnes/year
The frequency of measurement is thirty times for thirty years, or 30/30.

Next we group the catches into two year averages, and then compute the average
differences between catches at time scales of two years. The frequency of
measurement is 15 times over 30 years or 15/30.

D(15/30) = Nt 2ZY, - Yy, = -4861 tonnes/2 year

Then we group the catches into three year averages, computing the average
difference at this time scale. The frequency is 10/30

D(10/30) = Nt XYy-VYy, = -6781 tonnes/3 year
When the catches are grouped at 5 year intervals, the frequency is 6/30.
D(6/30) = Nt ZVYy;-Yy, = -11542 tonnes/5 year

This is easily continued for even multiples of 30: 6/30 5/30 3/30 2/30.
We can also make estimates at uneven multiples, though this will be harder, and
we won't attempt it here.

This analysis of change in catch as a function of increasing time scale (every
year, ever two year period, every three year period, etc) appears to be different than
our analysis of change in catch with increasing separation in time. In fact it is
exactly the same information. It has been expressed in different form. But the
information about pattern is exactly the same. In fact we get exactly the same
numbers when the lag (1,2,3) matches one of the frequency groupings (30/30 15/30
and 10/30). It takes a while to get used to the idea that analysis as a function of
separation (lag) is equivalent to analysis as a function of frequency. Most people
who work with serial association end up thinking either in terms of separation, or
in terms of frequency. They also end up being unable to recognize that the other
form of analysis as equivalent. If they think in terms of separation, they are unable
to recognize an equivalent analysis in terms of frequency.
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Separation vs frequency (continued)

The key point is that separation (lag) and frequency (interval) specifications
are different ways of looking at same information. They are not completely
different analyses.
+theoretical specification

Next, the spatial example. What is the average change in density from one sample
to the next ?

AN(1) = nt ZN,- X, , = 18.235 clams
If we divide the difference in density by the separation we obtain the spatial
gradient. This measures how rapidly the density changes per unit distance
laterally.

gradN(1) = n* XN, - X, = 18.235clams/2m

Both the average difference and the average gradient can be calculated at
increasingly large separations or lags.

AN(2) = n' ZN, - X , = 12.812 clams
ANBB) = nt' 2N, - X, = 28.667 clams
AN(4) = nt ZN, - X, , = 43.429 clams
AN(GB) = nt' 2N, - X, . = 68.462 clams
etc
gradN(2) = n'2'ZN,- X, = 12.812/4m = 3.203m™
gradN(3) = n*'3'ZN, - X, , = 28.667/6m = 4778m*
gradN(4) = n'4 ,ZN, - X, = 43.429/8m = 5428m™*

gradN(5) = n'4 XN, - X 68.422/10m = 6.842m™

The gradient increases as separation increases, which indicates the presence of
pattern.
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Separation vs Frequency (continued)
The same information that was expressed as a function of separation can also be
expressed as a function of frequency. For the clam densities, we again start with
the average differences from on location to the next.
AN(1/20) = n* EN, - X, , = 18.234 clams
The frequency of measurement is once every meter for 20 meters, or 1/20.
Next we group the density into averages over two meter blocks, and then compute
the average differences between blocks at a spatial scale of two meters. The
frequency of measurement is once every 2 meters over 20 years or 2/20.
AN(2/20) = n' ZN, - X, , = 12.812/4 m
Then we group the data into 8 m blocks. The frequency is 4/20
AN(4/20) = nt' EN, - X, , = 43.429/8 m

This again appears to differ from the analysis based on spatial separation but in fact
it is the same information in different form.
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Statistics of Association

Temporal and spatial association or pattern can be measured either in relation to
separation or in relation to frequency. The correlation coefficient measures
association as a function of separation. For the fish catch data we can calculate the
correlation between each measurement and its nearest neighbor in time.

Corr(Y, Y., = +0.816

Similarly, we can calculate the correlation between each measurment and its
second nearest neighbor in time, third nearest neighbor, etc.

Corr(Y,Y,,) = +0.636
Corr(Y, Y, ;) = +0.537
Corr(Y,Y.,) = +0.401

This is relatively easy to compute in Minitab.
MTB> Acf 'inshore'

This command automatically calculates the correlation in the data at lags 1 on up to
half the length of the data series. Looking at the handout (codacf.out) we see that
the inshore catch data is strongly correlated with itself at lags of one year. It
becomes somewhat less strongly associated at longer time lags. It becomes
negatively associated at time lags on the order of 10 years. That is, high catches
were preceded by low catches roughly 10 years before.

Similar information can be extracted by working with frequencies. This is
accomplished by computing the variance in catch as a function of frequency of
measurement. This will run from low frequency (2 cycles per 30 observations) to
high frequency (15 cycles per 30 observations). This is equivalent to running from
long lags (lag 15) to short lags (lag 2).

This equivalence is hard enough to see for means. It is even harder to see for
variances. In fact for many years ecologists analyzed spatial data for pattern by
computing variance as a function of frequency with no indication (or perhaps
knowledge) that this was equivalent to working with lagged autocorrelations.
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Application: independent residuals?

Another application of autocorrelation is testing whether residuals from an
analysis of data meet the important assumption that these residuals be independent.
As with the assumptions about normality, it is the residuals that must meet the test,
not the data. We should or course examine the residuals but if we are dealing with
autocorrelated data, then we have every reason to expect that the residuals will also
be autocorrelated. This is easily tested with the Minitab ACF command.

Here is an example, returning to the data on fish catch by the inshore sector.
The question is whether the inshore catch is related to the offshore catch. Do
inshore catches go down when offshore catches go up ? If we test this by
regression of inshore catch against offshore catch, we will need to check the
residuals to see if they are autocorrelated. When we do this, we find that the
residuals are strongly autocorrelated, hence not independent of one another. This
Is a problem because it means that each data point is less free to vary than we
thought. It means that we do not really have 28 degrees of freedom for our
regression analysis. One common remedy is to eliminate auotcorrelation within
the response variable by taking differences. That is, we take the difference
between year 1 and year 2, year 2 and 3, etc then use this series in our analysis,
rather than the inshore catch itself. The handout shows how to do this using the
Minitab command

MTB> differences

The handout shows that this substantially reduces the autocorrelation within the
inshore catch data. When we test for association of inshore with offshore catch
using the differenced data, we find that the residuals are now free also of
substantial autocorrelation. The residuals are independent and so we can use 28
degrees of freedom to compute a p-value based on the differenced data. The p-
value is 0.352 a good deal less than the p-value of 0.833 with autocorrelation
present. It is still not significant, but this time the test is better one.
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Application Pattern analysis.

Autocorrelation has a number of applications. One that we have touched on
already is discovering pattern in data. In particular, the idea of autocorrelation
allows us to describe pattern as a function of spatial or temporal scale. The inshore
catch data varies primarily at time scales of decades. There is little variation or
pattern at shorter time scales.

With spatial data we can also describe pattern as a function of scale. Patterns
become evident at particular scales. For example spatial variation in density of
pelagic fish may be very low at small separations, due to even spacing within
schools. At slightly larger separations there may be substantial variation due to
presence or absence of large schools. At still larger scales there may be additional
variation due to differences in the size and frequency of schools at the centre and
the edge of the species range. Autocorrelation is a useful way of describing this
dependence of pattern on scale.

Models  Autoregressive (regression type explanatory variable)
Moving average  (ANOVA type explanatory variable)
Autocorelation (X unknown)

Example of autocorrelative model. r=e™*"% correlation decays exponentially
Examples of autoregressive process regress series on itself at 1 or more lags
Examples of moving average process

regress series against average of preceeding values,

average over 2 or more values
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Extra: Deciding on autoregressive versus moving average models.
Diagnosed by examining the autocorrelation and partial autocorrelation.

MTB> ACF cl.
This computes the autocorrelation at series of lags, then plots these as a
function of lag.

MTB> PACF c1
This computes the partial autocorrelation coefficient at lag s, controlled for
all lesser lags. The PACF is also plotted as a function of lag.

PACF tapering and ACF spike : autoregressive Y, = f(Y,,)
ACF tapering and PACF spike : moving average
Y, = f(several previous t)
Variance as function of frequency (hierarchical ANOVA)
flat = no autocorrelation.
Rising indicates larger scale correlation.

Diagnosis in distance domain more suitable for
locally important processes,
not sensitive to large scale or long term effects.
Diagnosis in frequency domain more suitable for
larger scale temporal or spatial variation.

Extra:

The variance at measurement frequency f
Aggregate the units into increasingly larger groups
Chop the series into increasingly finer sections
Plot MS among versus group size.
Executed by setting up series of dummy variables in Minitab,
then carry out ANOVA

Spectral analysis. Better estimate of the same thing as above.

Plot spectral density as function of frequency (bottom) and period (On top). These
are calculated in the frequency domain.

Cycles per measurement unit on bottom.

Period on top to facilitate reading.
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