BIOL 4605/7220
 CH 20.1 Correlation

GPT Lectures Cailin Xu

November 9, 2011

GLM: correlation

Multivariate analysis
Multiple dependent variables
(Correlation)

Correlation

Two variables associated with each other?

No casual ordering (i.e., NEITHER is a function of the other)
Y_{1} - Total length of aphid stem mothers
Y_{2} - Mean thorax length of their parthenogenetic offspring

Data from Box 15.4 Sokal and Rohlf 2012

Correlation

Correlation

Correlation

Regression vs. Correlation

Regression

- Does Y depend on X ?
(describe func. relationship/predict)
- Usually, X is manipulated \& Y is a random variable
- Casual ordering $Y=f(X)$

Correlation

- Are Y1 and Y2 related?
- Both Y1 \& Y2 are random variables
- No casual ordering

Correlation: parametric vs. non-parametric

Parametric measures: Pearson's correlation
Nonparametric measures: Spearman's Rho, Kendall's Tau

Type of data	Measures of correlation
Measurements (from Normal/Gaussian Population)	Parametric: Pearson's correlation
Ranks, Scores, or Data that do not meet assumptions for sampling distribution $\left(t, F, \chi^{2}\right)$	Sonparametric:

Pearson's Correlation Coefficient (ρ)

- Strength of relation between two variables $Y_{1} \& Y_{2}$
- Geometric interpretation

$$
\rho=\cos (\theta)
$$

- Perfect positive association:

$$
\Theta=0^{\circ} \quad \rho=1
$$

- No association:

$$
\Theta=90^{\circ} \quad \rho=0
$$

- Perfect negative association:

$$
\theta=180^{\circ} \quad \rho=-1
$$

$-1 \leq \rho \leq 1$, true relation

Pearson's Correlation Coefficient (p)

- Strength of relation between two variables $Y_{1} \& Y_{2}$
- Geometric interpretation
- Definition

$$
\rho_{Y_{1}, Y_{2}}=\frac{\operatorname{cov}\left(Y_{1}, Y_{2}\right)}{\sigma_{Y_{1}} \sigma_{Y_{2}}}=\frac{E\left[\left(Y_{1}-\mu_{Y_{1}}\right)\left(Y_{2}-\mu_{Y_{2}}\right)\right]}{\sigma_{Y_{1}} \sigma_{Y_{2}}}
$$

Covariance of the two variables divided by the product of their standard deviations

Pearson's Correlation Coefficient (p)

- Strength of relation between two variables $Y_{1} \& Y_{2}$
- Geometric interpretation
- Definition
- Estimate ($\hat{\rho}=r$) from a sample

Parameter		Estimate
Name	Symbol	
Mean of Y_{1}	$\mu_{Y_{1}}$	\bar{Y}_{1}
Mean of Y_{2}	$\mu_{Y_{2}}$	\bar{Y}_{2}
Variance of Y_{1}	$\sigma_{Y_{1}}^{2}$	$S_{Y_{1}}^{2}$
Variance of Y_{2}	$\sigma_{Y_{2}}^{2}$	$s_{Y_{2}}^{2}$

Pearson's Correlation Coefficient (p)

- Strength of relation between two variables $Y_{1} \& Y_{2}$
- Geometric interpretation
- Definition
- Estimate ($\hat{\rho}=r$) from a sample

Parameter	Estimate
$\mu_{Y_{1}}$	\bar{Y}_{1}
$\mu_{Y_{2}}$	\bar{Y}_{2}
$\sigma_{Y_{1}}^{2}$	$s_{Y_{1}}^{2}$
$\sigma_{Y_{2}}^{2}$	$s_{Y_{2}}^{2}$

$$
\begin{gathered}
\rho_{Y_{1}, Y_{2}}=\frac{\operatorname{cov}\left(Y_{1}, Y_{2}\right)}{\sigma_{Y_{1}} \sigma_{Y_{2}}}=\frac{E\left[\left(Y_{1}-\mu_{Y_{1}}\right)\left(Y_{2}-\mu_{Y_{2}}\right)\right]}{\sigma_{Y_{1}} \sigma_{Y_{2}}} \\
r=\hat{\rho}=\frac{1}{n-1} \cdot \frac{\sum_{i}\left(Y_{1 i}-\bar{Y}_{1}\right)\left(Y_{2 i}-\bar{Y}_{2}\right)}{S_{Y_{1}} Y_{Y_{2}}}=\frac{\sum_{i}\left(Y_{1 i}-\bar{Y}_{1}\right)\left(Y_{2 i}-\bar{Y}_{2}\right)}{\sqrt{\sum_{i}\left(Y_{1 i}-\bar{Y}_{1}\right)^{2} \sum_{i}\left(Y_{2 i}-\bar{Y}_{2}\right)^{2}}}
\end{gathered}
$$

Pearson's Correlation: Significance Test

- Determine whether a sample correlation coefficient could have come from a population with a parametric correlation coefficient of ZERO
- Determine whether a sample correlation coefficient could have come from a population with a parametric correlation coefficient of CERTAIN VALUE $\neq 0$
- Generic recipe for Hypothesis Testing

Hypothesis Testing --- Generic Recipe

State population

\downarrow
State model/measure of pattern (statistic) \downarrow
State null hypothesis
\downarrow
State alternative hypothesis
\downarrow
State tolerance for Type I error \downarrow
State frequency distribution
\downarrow
Calculate statistic
】
Calculate p -value

Hypothesis Testing --- Generic Recipe

State population

All measurements on total length of aphid stem mothers \& mean thorax length of their parthenogenetic offspring made by the same experimental protocol
1). Randomly sampled
2). Same environmental conditions

Hypothesis Testing --- Generic Recipe

State population

State model/measure of pattern (statistic)

- Correlation of the two variables, ρ
- In the case $H_{0}: \rho=0$

$$
t=\frac{r-\rho}{\sqrt{\frac{1-r^{2}}{n-2}}} \quad\left(r=\hat{\rho}, \sim\left\{\begin{array}{l}
\text { 1) } N\left(0, \frac{1-r^{2}}{n-2}\right), \text { if } n \text { LARGE } \\
\text { 2) } t-\text { distribution, } d f=n-2, \text { otherwise }
\end{array}\right)\right.
$$

- In the case $H_{0}: \rho=\rho_{1}\left(\rho_{1} \neq 0\right)$

$$
\left.t=\frac{z-\eta}{1 / \sqrt{n-3}} \quad \begin{array}{l}
\quad\left(\text { where } z=\frac{1}{2} \ln \left(\frac{1+r}{1-r}\right), E(z)=\eta, \operatorname{var}(z)=\frac{1}{n-3}\left(\frac{1+\rho_{1}}{1-\rho_{1}}\right)\right.
\end{array}\right)
$$

Hypothesis Testing --- Generic Recipe

State population

\downarrow
State model/measure of pattern (statistic)

- Correlation of the two variables, ρ
- In the case $H_{0}: \rho=0$

$$
t=\frac{r-\rho}{\sqrt{\frac{1-r^{2}}{n-2}}}
$$

$$
\left(r=\hat{\rho}, \sim\left\{\begin{array}{l}
\text { 1) } N\left(0, \frac{1-r^{2}}{n-2}\right), \text { if } n \text { LARGE } \\
\text { 2) } t-\text { distribution, } d f=n-2
\end{array}\right)\right.
$$

Hypothesis Testing --- Generic Recipe

State population
\downarrow
State model/measure of pattern (statistic)
\downarrow
State null hypothesis

$$
H_{0}: \rho=0
$$

Hypothesis Testing --- Generic Recipe

State population

\downarrow
State model/measure of pattern (statistic)
\square
State null hypothesis
\downarrow
State alternative hypothesis

$$
H_{A}: \rho \neq 0
$$

Hypothesis Testing --- Generic Recipe

State population

\downarrow
State model/measure of pattern (statistic) \downarrow

State null hypothesis \downarrow

State alternative hypothesis
\downarrow
State tolerance for Type I error

$$
\alpha=5 \%(\text { conventional level })
$$

Hypothesis Testing --- Generic Recipe

State population

\downarrow
State model/measure of pattern (statistic)
\downarrow

State null hypothesis

\square
State alternative hypothesis
\downarrow
State tolerance for Type I error \downarrow
State frequency distribution

t-distribution

Hypothesis Testing --- Generic Recipe

State population

State model/measure of pattern (statistic)
\downarrow

State null hypothesis

 \downarrowState alternative hypothesis
\downarrow
State tolerance for Type I error
\downarrow
State frequency distribution
\downarrow
Calculate statistic

- t-statistic
- correlation coefficient estimate, $r=0.65$
- $t=(0.65-0) / 0.21076=3.084$

Hypothesis Testing --- Generic Recipe

State population

\downarrow
State model/measure of pattern (statistic)
\downarrow

State null hypothesis

\square
State alternative hypothesis
\downarrow

State tolerance for Type I error

\downarrow

State frequency distribution

\downarrow
Calculate statistic

Calculate p-value

- $t=3.084, \mathrm{df}=13$
- $p=0.0044$ (one-tail) \& 0.0088 (two-tail)

Hypothesis Testing --- Generic Recipe

State population

\downarrow
State model/measure of pattern (statistic) \downarrow

State null hypothesis

 \downarrowState alternative hypothesis
\downarrow

State tolerance for Type I error

\downarrow
State frequency distribution

Declare decision

- $p=0.0088<\alpha=0.05$
- reject H_{0}

Hypothesis Testing --- Generic Recipe

State population

State model/measure of pattern (statistic)

\downarrow

State null hypothesis

\downarrow
State alternative hypothesis

Pearson's Correlation - Assumptions

- Assumptions
- Normal \& independent errors
- Homogeneous around straight line

- What if assumptions for Pearson test not met?
- Here are the observations relative to the correlation line (comp 1)
- Not homogeneous, due to outliers (observations 8 \& 9)

Pearson's Correlation - Randomization test

- Significance test with no distributional assumptions
- Hold one variable, permute the other one many times
- A new r from each new permutation
- Construct empirical frequency distribution
- Compare the empirical distribution with the observed r

Pearson's Correlation - Randomization test

Pearson's Correlation coefficient - Confidence Limit

- 95% confidence limit (tolerance of Type I error @ 5%)
- t-distribution ($\mathrm{df}=\mathrm{n}-2$) (NO)
a). $\mathrm{HO}: \rho=0$ was rejected
b). Distribution of r is negatively skewed
c). Fisher's transformation
- $z=\frac{1}{2} \ln \left(\frac{1+r}{1-r}\right) ; \frac{z-\eta}{1 / \sqrt{n-3}} \sim N(0,1)$ or $t_{[\propto]}$

$$
\eta=\frac{1}{2} \ln \left(\frac{1+\rho_{1}}{1-\rho_{1}}\right)
$$

Pearson's Correlation coefficient - Confidence Limit

C. I. for η :

- $\left\{\begin{array}{ll}z_{l}=z-z_{(1-\alpha / 2)} \cdot \sqrt{1 /(n-3)} \\ z_{u}=z+z_{(1-\alpha / 2)} \cdot \sqrt{1 /(n-3)}\end{array}, z_{(1-\alpha / 2)}, \begin{array}{l}\text { critical value from } N(0,1) a t \\ p=1-\alpha / 2\end{array}\right.$
C. I. for ρ :
$\left\{\begin{array}{l}r_{l}=\tanh \left(z_{l}\right)=\frac{\exp \left(2 z_{l}\right)-1}{\exp \left(2 z_{l}\right)+1} \\ r_{u}=\tanh \left(z_{u}\right)=\frac{\exp \left(2 z_{u}\right)-1}{\exp \left(2 z_{u}\right)+1}\end{array}\right.$

For our example:

95 percent confidence interval:
$r_{l}=0.207$
$r_{u}=0.872$

Nonparametric: Spearman's Rho

- Measure of monotone association used when the distribution of the data make Pearson's correlation coefficient undesirable or misleading
- Spearman's correlation coefficient (Rho) is defined as the Pearson's correlation coefficient between the ranked variables
- Rho $=\frac{\sum_{i}\left(y_{1 i}-\bar{y}_{1}\right)\left(y_{2 i}-\bar{y}_{2}\right)}{\sqrt{\sum_{i}\left(y_{1 i}-\bar{y}_{1}\right)^{2} \sum_{i}\left(y_{2 i}-\bar{y}_{2}\right)^{2}}}$, where $y_{1 i}, y_{2 i}$ are ranks of $Y_{1 i}, Y_{2 i}$
- If no ties, Rho $=1-\frac{6 \sum_{i} d_{i}^{2}}{n\left(n^{2}-1\right)}$, where $d_{i}=y_{1 i}-y_{2 i}$
- Randomization test for significance (option)

Nonparametric: Kendall's Tau

- Concordant pairs $\left(Y_{1 i}, Y_{2 i}\right)$ and $\left(Y_{1 j}, Y_{2 j}\right)$:

$$
\text { If } Y_{1 i}>Y_{1 j} \text { and } Y_{2 i}>Y_{2 j} \text { or if } Y_{1 i}<Y_{1 j} \text { and } Y_{2 i}<Y_{2 j}
$$

(if the ranks for both elements agree)

- Discordant pairs $\left(Y_{1 i}, Y_{2 i}\right)$ and $\left(Y_{1 j}, Y_{2 j}\right)$:

$$
\text { If } Y_{1 i}>Y_{1 j} \text { and } Y_{2 i}<Y_{2 j} \text { or if } Y_{1 i}<Y_{1 j} \text { and } Y_{2 i}>Y_{2 j}
$$

(if the ranks for both elements disagree)

- Neither concordant or discordant

$$
\text { If } Y_{1 i}=Y_{1 j} \text { or } Y_{2 i}=Y_{2 j}
$$

Nonparametric: Kendall's Tau

- Kendall's Tau =

$$
\begin{cases}\frac{n_{c}-n_{d}}{\frac{1}{2} n(n-1)} & \text { (no ties) } \\
\frac{n_{c}-n_{d}}{n_{c}+n_{d}} & \begin{array}{l}
\text { (in the case } \\
\text { of ties) }
\end{array} \\
& n_{d}=\text { where } n_{c}=\text { number of concordant pairs } \\
\text { Gamma coefficient or Goodman correlation coefficient }\end{cases}
$$

- The denominator is the total number of pairs, $-1 \leq t a u \leq 1$
- tau $=1$, for perfect ranking agreement
- tau $=-1$, for perfect ranking disagreement
- tau ≈ 0, if two variables are independent
- For large samples, the sampling distribution of tau is approximately normal

Nonparametric

For more information on nonparametric test of correlation e.g., significance test, etc.

References:

- Conover, W.J. (1999) "Practical nonparametric statistics", 3rd ed. Wiley \& Sons
- Kendall, M. (1948) "Rank Correlation Methods", Charles Griffin \& Company Limited
- Caruso, J. C. \& N. Cliff. (1997) "Empirical Size, Coverage, and Power of Confidence Intervals for Spearman's Rho", Ed. and Psy. Meas., 57 pp. 637-654
- Corder, G.W. \& D.I. Foreman. (2009) "Nonparametric Statistics for NonStatisticians: A Step-by-Step Approach", Wiley

Data Total length of aphid stem mothers (Y1) Vs.
Mean thorax length of their parthenogenetic offspring (Y2)

\#	Y_{1}	Y_{2}
1	8.7	5.95
2	8.5	5.65
3	9.4	6.00
4	10.0	5.70
5	6.3	4.70
6	7.8	5.53
7	11.9	6.40
8	6.5	4.18
9	6.6	6.15
10	10.6	5.93
11	10.2	5.70
12	7.2	5.68
13	8.6	6.13
14	11.1	6.30
15	11.6	6.03

Total length of mothers Vs. Mean thorax length of offspring

RAW

RANK

$\#$	Y_{1}	Y_{2}	y_{1}	y_{2}
1	8.7	5.95	8	9
2	8.5	5.65	6	4
3	9.4	6.00	9	10
4	10.0	5.70	10	6.5
5	6.3	4.70	1	2
6	7.8	5.53	5	3
7	11.9	6.40	15	15
8	6.5	4.18	2	1
9	6.6	6.15	3	13
10	10.6	5.93	12	8
11	10	5.70	11	6.5
12	7.2	5.68	4	5
13	8.6	6.13	7	12
14	11.1	6.30	13	14
15	11.6	6.03	14	11

$$
\begin{aligned}
& \text { Group } \\
& \text { Activity }
\end{aligned}
$$

Activity Instructions

- Question: REGRESSION or CORRELATION?
- Justification guideline:

Activity Instructions

- Form small groups or 2-3 people.
- Each group is assigned a number
- Group members work together on each example for 5
minutes, come up with an answer \& your justifications
- A number will be randomly generated from the group \#'s
- The corresponding group will have to present their answer \& justifications
- Go for the next example .. .

Activity Instructions

There is NO RIGHT/WRONG
ANSWER (for these examples),
as long as your justifications are
LOGICAL

Example 1

Height and ratings of physical attractiveness vary across individuals. Would you analyze this as regression or correlation?

Subject	Height	Phy
1	69	7
2	61	8
3	68	6
4	66	5
5	66	8
.	..	.
48	71	10

Example 2

Airborne particles such as dust and smoke are an important part of air pollution. Measurements of airborne particles made every six days in the center of a small city and at a rural location 10 miles southwest of the city
(Moore \& McCabe, 1999. Introduction to the Practice of Statistics).

Would you analyze this relation as regression or correlation?

Example 3

A study conducted in the Egyptian village of Kalama examined the relation between birth weights of 40 infants and family monthly income
(El-Kholy et al. 1986, Journal of the Egyptian Public Health Association, 61: 349).

Would you analyze this relation as regression or correlation?

