BIOL 4605/7220 CH 20.1 Correlation

> GPT Lectures Cailin Xu

> November 9, 2011

Correlation

- Two variables associated with each other?
- No casual ordering (i.e., NEITHER is a function of the other)

- Y_1 Total length of aphid stem mothers
- Y_2 Mean thorax length of their parthenogenetic offspring

Data from Box 15.4 Sokal and Rohlf 2012

Correlation

Regression vs. Correlation

Regression

- Does Y depend on X? (describe func. relationship/predict)
- Usually, X is manipulated & Y is a random variable
- Casual ordering Y=f(X)

Correlation

- Are Y1 and Y2 related?
- Both Y1 & Y2 are random variables
- No casual ordering

Correlation: <u>parametric</u> vs. <u>non-parametric</u>

<u>Parametric measures</u>: Pearson's correlation

Nonparametric measures: Spearman's Rho, Kendall's Tau

Type of data	Measures of correlation
Measurements (from	<u>Parametric:</u>
Normal/Gaussian Population)	Pearson's correlation
Ranks, Scores, or Data that do	Nonparametric:
sampling distribution (t, F, χ^2)	Spearman's Rho, Kendall's Tau

- Strength of relation between two variables $Y_1 \& Y_2$
- Geometric interpretation

 $\rho = \cos(\theta)$

Perfect positive association:

 $\Theta = 0^{\circ} \rho = 1$

No association:

 $\Theta = 90^{\circ} \rho = 0$

Perfect negative association:

 $\Theta = 180^{\circ} \rho = -1$

 $-1 \leq \rho \leq 1$, true relation

- Strength of relation between two variables $Y_1 & Y_2$
- Geometric interpretation
- Definition

$$\rho_{Y_1, Y_2} = \frac{\operatorname{cov}(Y_1, Y_2)}{\sigma_{Y_1} \sigma_{Y_2}} = \frac{E[(Y_1 - \mu_{Y_1})(Y_2 - \mu_{Y_2})]}{\sigma_{Y_1} \sigma_{Y_2}}$$

Covariance of the two variables divided by the product of their standard deviations

- Strength of relation between two variables $Y_1 \& Y_2$
- Geometric interpretation
- Definition
- Estimate $(\hat{\rho} = r)$ from a sample

Parameter		Estimate	
Name	Symbol		
Mean of Y_1	μ_{Y_1}	$\overline{Y_1}$	
Mean of Y_2	μ_{Y_2}	\overline{Y}_2	
Variance of Y_1	$oldsymbol{\sigma}_{Y_1}^2$	$s_{Y_1}^2$	
Variance of Y_2	$\sigma_{\scriptscriptstyle Y_2}^2$	$s_{Y_2}^2$	

- Strength of relation between two variables $Y_1 & Y_2$
- Geometric interpretation
- Definition
- Estimate $(\hat{\rho} = r)$ from a sample

Parameter	Estimate	$\rho_{Y_1, Y_2} = \frac{\operatorname{cov}(Y_1, Y_2)}{\sigma_{Y_1} \sigma_{Y_2}} = \frac{E[(Y_1 - \mu_{Y_1})(Y_2 - \mu_{Y_2})]}{\sigma_{Y_1} \sigma_{Y_2}}$
μ_{Y_1}	$\overline{Y_1}$	
μ_{Y_2}	\overline{Y}_2	
$\sigma_{Y_1}^2$	$s_{Y_1}^2$	$\sum \left(v \overline{v} \right) \left(v \overline{v} \right) \qquad \sum \left(v \overline{v} \right) \left(v \overline{v} \right)$
$\sigma_{\scriptscriptstyle Y_2}^2$	$s_{Y_2}^{2}$	$r = \hat{\rho} = \frac{1}{n-1} \cdot \frac{\sum_{i}^{n} (I_{1i} - I_{1})(I_{2i} - I_{2})}{\sum_{i} (I_{1i} - I_{1})(I_{2i} - I_{2})} = \frac{\sum_{i}^{n} (I_{1i} - I_{1})(I_{2i} - I_{2})}{\sum_{i} (I_{1i} - I_{1})(I_{2i} - I_{2})}$
		$\sqrt{\sum_{i} (Y_{1i} - Y_1)^2} \sum_{i} (Y_{2i} - Y_2)^2$

Pearson's Correlation: Significance Test

- Determine whether a sample correlation coefficient could have come from a population with a parametric correlation coefficient of ZERO
- Determine whether a sample correlation coefficient could have come from a population with a parametric correlation coefficient of CERTAIN VALUE ≠ 0
- Generic recipe for Hypothesis Testing

State population

All measurements on total length of aphid stem mothers & mean thorax length of their parthenogenetic offspring made by <u>the same experimental protocol</u>

Randomly sampled
 Same environmental conditions

State population

State model/measure of pattern (statistic)

- Correlation of the two variables, p
- In the case $H_0: \rho = 0$

$$t = \frac{r - \rho}{\sqrt{\frac{1 - r^2}{n - 2}}} \left(r = \hat{\rho}, \sim \begin{cases} 1 \end{pmatrix} N\left(0, \frac{1 - r^2}{n - 2}\right), & \text{if } n \text{ LARGE} \\ 2 \end{pmatrix} t - distribution, & \text{if } = n - 2, \text{ otherwise} \end{cases} \right)$$

• In the case $H_0: \rho = \rho_1$ $(\rho_1 \neq 0)$ $\eta = \frac{1}{2} \ln \left(\frac{1+\rho_1}{1-\rho_1} \right)$ $t = \frac{z-\eta}{1/\sqrt{n-3}}$ $\left(where \ z = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right), E(z) = \eta, \text{ var}(z) = \frac{1}{n-3} \right)$ z: Normal/tends to normal rapidly as n increases for $\rho \neq 0$

t-statistic: N(0, 1) or t (df = ∞)

State population

State model/measure of pattern (statistic)

- Correlation of the two variables, p
- In the case $H_0: \rho = 0$

$$t = \frac{r - \rho}{\sqrt{\frac{1 - r^2}{n - 2}}} \left(\begin{array}{c} r = \hat{\rho}, \\ - \left\{ \begin{array}{c} 1 \right\} N \left(0, \frac{1 - r^2}{n - 2} \right), \text{ if } n \text{ LARGE} \\ 2 \right\} t - distribution, df = n - 2 \end{array} \right)$$

State population

State model/measure of pattern (statistic)

State null hypothesis

$$H_0: \rho = 0$$

State alternative hypothesis

 $H_A: \rho \neq 0$

Pearson's Correlation - Assumptions

- Assumptions
- Normal & independent errors
- Homogeneous around straight line

- What if assumptions for Pearson test not met?
- Here are the observations relative to the correlation line (comp 1)
- Not homogeneous, due to outliers (observations 8 & 9)

Pearson's Correlation – Randomization test

- Significance test with no distributional assumptions
- Hold one variable, permute the other one many times
- A new r from each new permutation
- Construct empirical frequency distribution
- Compare the empirical distribution with the observed r

Pearson's Correlation – Randomization test

Histogram of r

- 8000 times
- p1 = p(r > 0.65) = 0.001875
- p2 = p (r < -0.65) = 0.003875
- p = p1 + p2 = 0.00575 < α = 0.05</p>
- Reject Null, accept alternative
- Consistent with testing result from theoretical t-distribution, for this data

Pearson's Correlation coefficient - Confidence Limit

- 95% confidence limit (tolerance of Type I error @ 5%)
- t-distribution (df = n 2) (NO)
 - a). H0: ρ = 0 was rejected
 - b). Distribution of r is negatively skewed
 - c). Fisher's transformation

•
$$z = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right); \ \frac{z-\eta}{1/\sqrt{n-3}} \sim N(0,1) \text{ or } t_{[\infty]}$$

$$\eta = \frac{1}{2} \ln \left(\frac{1+\rho_1}{1-\rho_1} \right)$$

Pearson's Correlation coefficient - Confidence Limit

<u>C. I. for η :</u>

•
$$\begin{cases} z_l = z - z_{(1-\alpha/2)} \cdot \sqrt{1/(n-3)} \\ z_u = z + z_{(1-\alpha/2)} \cdot \sqrt{1/(n-3)} \end{cases}, \begin{array}{c} z_{(1-\alpha/2)}, & \text{critical value from N(0, 1) at} \\ p = 1-\alpha/2 \end{cases}$$

<u>C. I. for ρ</u>:

$$\begin{cases} r_{l} = \tanh(z_{l}) = \frac{\exp(2z_{l}) - 1}{\exp(2z_{l}) + 1} \\ r_{u} = \tanh(z_{u}) = \frac{\exp(2z_{u}) - 1}{\exp(2z_{u}) + 1} \end{cases}$$

95 percent confidence interval: $r_l = 0.207$ $r_u = 0.872$

Nonparametric: Spearman's Rho

- Measure of monotone association used when the distribution of the data make Pearson's correlation coefficient undesirable or misleading
- Spearman's correlation coefficient (Rho) is defined as the Pearson's correlation coefficient between the ranked variables

$$Rho = \frac{\sum_{i} (y_{1i} - \overline{y}_1)(y_{2i} - \overline{y}_2)}{\sqrt{\sum_{i} (y_{1i} - \overline{y}_1)^2 \sum_{i} (y_{2i} - \overline{y}_2)^2}},$$

where y_{1i} , y_{2i} are ranks of Y_{1i} , Y_{2i}

• If no ties,
$$Rho = 1 - \frac{6\sum_{i} d_i^2}{n(n^2 - 1)}$$
, where $d_i = y_{1i} - y_{2i}$

Randomization test for significance (option)

Nonparametric: Kendall's Tau

• Concordant pairs (Y_{1i}, Y_{2i}) and (Y_{1j}, Y_{2j}) :

If $Y_{1i} > Y_{1j}$ and $Y_{2i} > Y_{2j}$ or if $Y_{1i} < Y_{1j}$ and $Y_{2i} < Y_{2j}$

(if the ranks for both elements agree)

- Discordant pairs (Y_{1i}, Y_{2i}) and (Y_{1j}, Y_{2j}) : If $Y_{1i} > Y_{1j}$ and $Y_{2i} < Y_{2j}$ or if $Y_{1i} < Y_{1j}$ and $Y_{2i} > Y_{2j}$ (if the ranks for both elements disagree)
- Neither concordant or discordant If $Y_{1i} = Y_{1j}$ or $Y_{2i} = Y_{2j}$

Nonparametric: Kendall's Tau

Kendall's Tau =

- The denominator is the total number of pairs, $-1 \le tau \le 1$
- tau = 1, for perfect ranking agreement
- tau = -1, for perfect ranking disagreement
- tau ≈ 0, if two variables are independent
- For large samples, the sampling distribution of tau is approximately normal

Nonparametric

For more information on nonparametric test of correlation e.g., significance test, etc.

References:

- Conover, W.J. (1999) "Practical nonparametric statistics", 3rd ed. Wiley & Sons
- Kendall, M. (1948) "Rank Correlation Methods", Charles Griffin & Company Limited
- Caruso, J. C. & N. Cliff. (1997) "Empirical Size, Coverage, and Power of Confidence Intervals for Spearman's Rho", Ed. and Psy. Meas., 57 pp. 637-654
- Corder, G.W. & D.I. Foreman. (2009) "Nonparametric Statistics for Non-

Statisticians: A Step-by-Step Approach", Wiley

Data Total length of aphid stem mothers (Y1) Vs. Mean thorax length of their parthenogenetic offspring (Y2)

#	Y_1	Y_2
1	8.7	5.95
2	8.5	5.65
3	9.4	6.00
4	10.0	5.70
5	6.3	4.70
6	7.8	5.53
7	11.9	6.40
8	6.5	4.18
9	6.6	6.15
10	10.6	5.93
11	10.2	5.70
12	7.2	5.68
13	8.6	6.13
14	11.1	6.30
15	11.6	6.03

Total length of mothers Vs. Mean thorax length of offspring

	RA	W	RAI	NK
#	Y_1	Y_2	y_1	y_2
1	8.7	5.95	8	9
2	8.5	5.65	6	4
3	9.4	6.00	9	10
4	10.0	5.70	10	6.5
5	6.3	4.70	1	2
6	7.8	5.53	5	3
7	11.9	6.40	15	15
8	6.5	4.18	2	1
9	6.6	6.15	3	13
10	10.6	5.93	12	8
11	10.2	5.70	11	6.5
12	7.2	5.68	4	5
13	8.6	6.13	7	12
14	11.1	6.30	13	14
15	11.6	6.03	14	11

Activity Instructions

- Question: REGRESSION or CORRELATION?
- Justification guideline:

Activity Instructions

- Form small groups or 2-3 people.
- Each group is assigned a number
- Group members work together on each example for 5 minutes, come up with an answer & your justifications
- A number will be randomly generated from the group #'s
- The corresponding group will have to present their answer
 & justifications
- Go for the next example . . .

Activity Instructions

There is <u>NO RIGHT/WRONG</u>

ANSWER (for these examples),

as long as your justifications are

LOGICAL

Example 1

Height and ratings of physical attractiveness vary across individuals. Would you analyze this as <u>regression</u> or <u>correlation</u>?

Subject	Height	Phy
1	69	7
2	61	8
3	68	6
4	66	5
5	66	8
•	••	•
48	71	10

Example 2

Airborne particles such as dust and smoke are an important part of air pollution. Measurements of airborne particles made every six days in the center of a small city and at a rural location 10 miles southwest of the city (Moore & McCabe, 1999. Introduction to the Practice of Statistics).

Would you analyze this relation as <u>regression</u> or <u>correlation</u>?

A study conducted in the Egyptian village of Kalama examined the relation between birth weights of 40 infants and family monthly income (El-Kholy et al. 1986, Journal of the Egyptian Public Health Association, 61: 349).

Would you analyze this relation as <u>regression</u> or <u>correlation</u>?