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ReCap. Part I (Chapters 1,2,3,4), Part II (Ch 5, 6, 7)
ReCap Part III (Ch 9, 10, 11), Part IV (Ch13, 14)
18 Binomial Response Variables
18.1 Logistic Regression (Dose-Response)
18.2 Single Factor.  Prospective Analysis 
18.3 Single Factor.  Retrospective Analysis 
18.4 Single Random Factor. 
18.5 Single Explanatory Variable. Ordinal Scale. 
18.6 Two Categorical Explanatory Variables 
18.7 Logistic ANCOVA 

on chalk board

Ch18.xls

Today:   Reformulating the response variable.  
Binomial response across levels of a single random  factor. 

N.b.  
Poisson analysis followed by Binomial tends to be
confusing.  Replace with comparison of result to G2

statistic from Poisson analysis, at step 10.
Replace example from Sokal and Rohlf with example from 
McCullagh and Nelder, using the Schoener lizard data to
illustrate logistic regression for counts traditionally 
classified as ‘log-linear’

Model Based Statistics in Biology.   
Part V.  The Generalized Linear Model.
Chapter 18.4   Single Random Factor

ReCap Part I (Chapters 1,2,3,4)  Quantitative reasoning
ReCap Part II (Chapters 5,6,7)  Hypothesis testing and estimation
ReCap (Ch 9, 10,11) The General Linear Model with a single explanatory variable.
ReCap (Ch 12,13,14,15) GLM with more than one explanatory variable
ReCap (Ch 16,17).  Generalized Linear Model.  Poisson response variables. 
ReCap (Ch 18).  We used logistic regression to analyze the risk of cancer in
smokers.  This is called cross-sectional analysis because we compare individuals
with different histories at a single point in time.  This was called a retrospective
analysis.

Wrap-up. 

The analysis of counts in a two-way classification was more informative as a
binomial response than as a Poisson response variable.  
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Bright red Not bright red
Early spring 29 11 40
Late spring 273 191 464
Early summer 8 31 39
Late summer 64 64 128

374 297 671

Analysis of Binomial Response Variables.  Example: Beetle counts.

Does the proportion of bright red tiger beetles change seasonally ?
(Sokal and Rohlf 1995 Box 17.8)

Data such as this are traditionally presented as a two-way classification.

We begin with the traditional approach, which stems from the two-way classification. 
Each of the 8 counts is considered a Poisson count in a two way design where we test
for row-by column interaction. 

1.  Construct the  model
  Response variable.   f = count of beetles in each season in two categories

(8 such counts)
  Explanatory variables.    Ssn = season (4 categories, 3 parameters)

Clr = red or not red

This is the alternative model
( ) ( ) ( ) ( )

f e e e e PoissonError
ref Ssn Clr Ssn Clr= +

β β β β *

This model has two factors (season, colour) and three terms (season, colour, and
season*colour).
e#ssn*Clr  is term in which we are interested, It is the change in proportion of beetles in
each of 3 seasons, compared to the first season.  e#ssn*Clr stands for 3 cross-product
ratios.   To test this term we compare the fit to this model to the fit when the
interaction term is dropped.  

If we drop the interaction term, the model becomes.

This is the null model
( ) ( ) ( )

f e e e PoissonError
ref Ssn Clr= +

β β β

This model has two factors and two terms.  It is a null model in the sense that the
interaction term is missing.  



3Chapter 18.4

 MTB > set into c1
 DATA> 29 273 8 64
 MTB > end
 MTB > set into c2
 DATA> 11 191 31 64
 MTB > end

 MTB > let c3 = c1 + c2
 MTB > let k1 = sum(c1) + sum(c2)
 MTB > let c3 = c3/k1
 MTB > let c4 = c3*sum(c1)/k1
 MTB > let c5 = c3*sum(c2)/k1

 MTB > print c4 c5
 
  ROW         C4         C5
 
    1   0.033227   0.026386
    2   0.385429   0.306076
    3   0.032396   0.025726
    4   0.106325   0.084435

 MTB > stack c1 c2 c6
 MTB > stack c4 c5 c7
 MTB > let c7 = c7*k1
 MTB > let c8 = c6 - c7
 MTB > name c6 'f' c7 'pN' c8 'res'

 MTB > print c6 c7 c8
 
  ROW      f        pN       res
 
    1     29    22.295    6.7049
    2    273   258.623   14.3770
    3      8    21.738  -13.7377
    4     64    71.344   -7.3443
    5     11    17.705   -6.7049
    6    191   205.377  -14.3770
    7     31    17.262   13.7377
    8     64    56.656    7.3443

2.  Execute.  
The model underlying the Poisson approach is often not stated.  
The analysis is traditionally completed by comparing the observed and expected 
count in each cell of the table. 

Compute expected proportions in each cell
of the two-way table.

Print the expected proportions p, one for
each cell of the two-way table.

 
Compute the fitted values fits = pN.
The compute the residuals, based on the
data equations:
Observed  =  Fits  + Residual

Print the 8 data equations.
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 MTB > plot 'res' 'pN' 
         -
 res     -    *                                                *
         -
       10+
         -            *
         -     *
         -
         -
        0+
         -
         -
         -     *
         -               *
      -10+
         -
         -     *                                    *
         -
           +---------+---------+---------+---------+---------+------pN
           0        50       100       150       200       250

  MTB > hist 'res'

 Histogram of res   N = 8

 Midpoint   Count
      -15       2  **
      -10       0
       -5       2  **
        0       0
        5       2  **
       10       0
       15       2  **

 MTB > hist '2lnL';
 SUBC> increment 20.
 Histogram of 2lnL   N = 8
 Midpoint   Count
    -20.0       4  ****
      0.0       0
     20.0       3  ***
     40.0       1  *

3.  Use parameter estimates to calculate residuals, evaluate model.
Structural model contains no regression lines, so no need to check bowl/arch.

 For generalized linear model we check the homogeneity assumption at this point,
to make sure the binomial error assumption is correct.

We do not expect the residuals to be normal, because the data are counts, for which
the variance usually increases along with the fitted value.

A quick plot shows that the residuals, as
expected, are not normal.

As a matter of interest, the likelihood ratios
are not normal either.
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 MTB > let c9 = 'f'*log('f'/'pN')
 MTB > let c9 = 2*c9
 MTB > name c9 '2lnL'
 MTB > print c6 c7 c8 c9
 
  ROW      f        pN       res      2lnL
 
    1     29    22.295    6.7049   15.2499
    2    273   258.623   14.3770   29.5389
    3      8    21.738  -13.7377  -15.9937
    4     64    71.344   -7.3443  -13.9051
    5     11    17.705   -6.7049  -10.4708
    6    191   205.377  -14.3770  -27.7233
    7     31    17.262   13.7377   36.2987
    8     64    56.656    7.3443   15.6019

 MTB > let k2 = sum('2lnL')
 MTB > print k2
 K2       28.5964

Because we expect count data to generate non-normal errors, we have used a general
linear model based on a non-normal error structure: a Poisson error structure in this
case.

The plot of the residuals versus fitted values showed no pattern of expansion from
left to right: no cones.  Based on this, we are going to say that the residuals are
acceptable for computing a p-value from the log likelihood ratio.  

4. Population 
We do not know the biological  population from which the numbers were taken. 
Hence we cannot draw inferences from our sample to the entire population of tiger
beetles.  We are dealing with a hypothetical population consisting of all possible
values that could have arisen via the stated sampling conditions.  We can draw
inferences only to the hypothetical population, as best we can define it.

5. Decide on mode of inference.  Is hypothesis testing appropriate?
Yes, we are interested in whether the interaction term (heterogeneity of proportions)
is greater than by chance. 

6.  HA Ho  Hence:βssn Clr* ≠ 0 e Ssn Clr
β

* ≠ 1

Hence:βSsn Clr* = 0 e Ssn Clr
β

* = 1

statistic = G2

probability distribution = chisquare
  " = 5%

7.  Analysis of Deviance
Compute log likelihood ratios from observed and fitted values.

Compute G2-statistic =  2 @ sum of the likelihood ratios.
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 MTB > cdf 28.5964;
 SUBC> chisquare 3.

  28.5964     1.0000

7.  Calculate improvement in fit ())))G2) due to explanatory variables. 
ANOVA table is replaced  by Analysis of Deviance table.
 Source  df  Deviance = G2  )G2

Intercept e$ref 1
Ssn  e$Ssn*Clr 3 28.596

The degrees of freedom are computed exactly the same as was the case with the
interaction term in a two-way ANOVA.  The degrees of freedom for the interaction
term are calculated as the product of the degrees of freedom for the main effects:  

dfssn*clr  =  dfssn * dfclr  =  (2!1)*(4!1)  =  3.

This is an example of how what we have learned is carried over to the analysis of
frequencies. 

The improvement  is )G2 = 28.59 (compare  Box 17.8)
Sokal and Rohlf (1995) show how to make an adjustment for continuity.  Typically
this adjustment will be small unless observed values less than 5 are common.  There
is little point in making this adjustment for continuity unless our calculated G2-
statistic has a p-value that is very close to the criterion ".
Compute  p-value for the G2-statistic.

The p-value is computed for three degrees of freedom.  dfrow @ dfcol = 1@3.

p <  0.001

8.  Calculate randomized p-value ?  Not needed if error structure appropriate.

9. Declare decision.   p < 0.001  hence reject Ho and accept  HA

Ho: pbR|early Sp  =  pbR|late Sp  =  pbR|early Su  =  pbR|late Su

We accept the alternative hypothesis

HA: proportions are not equal.

Frequency of bright red beetles depends on season.
  ()G2 = 28.596, df = 3, p < 0.0001)

Next we ask, what is the unit ?  
The two columns are hard to justify as ‘units.’  Instead they are better viewed as
binomial response (red / not red) in 4 seasons.   Thus we have 671 units (beetles)
scored as red or not.   We rerun the analysis with binomial response variable.
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f =  p$  @ N + residual lnL = 2 f@ ln(f/f$)

29 = 0.56@40 + 6.7 7.625

273 = 0.56@464 + 14.4 14.769

8 = 0.56@39 ! 13.7 !7.997 .

64 = 0.56@128 ! 7.34 !6.953

G
2
  =  2 G  f@ ln(f/f$) = 14.89

1.  Construct the  model
  Response variable.   p = proportion of red beetles in each season.
  Explanatory variables.    Ssn = season (4 categories, 3 parameters)

This is the alternative model
( ) ( )

p e e BinomialError
ref Ssn= +

β β

e#ssn is the change in proportion of beetles in each of 3 seasons, compared to the first
season.  e#ssn stands for 3 cross-product ratios. 
This model has 1 factor (season).
If we drop the season term, the model becomes.

This is the null model (no change in proportion)
( )

p e BinomialError
ref

= +
β

The difference between the null and alternative models is  the improvement in fit.

2.  Execute.  
In this analysis, we can compute the residuals and the improvement in fit directly, 

The residuals are computed from fitted values f$ for the second model (null model, no
interaction term).  These fitted values can be estimated from the marginal totals.  

We will use information about the number of beetles collected in each season, and

about the total number of each coloration, to estimate f$ for each of the 4 binomial
counts. 

Bright
red

Not bright
red

p p/p(ref) f fhat f*ln(f/fhat)

Early sprinG2 29 11 40 0.73 1.00 29.00 22.29508 7.624962

Late spring 273 191 464 0.59 0.81 273.00 258.623 14.76946

Early summer 8 31 39 0.21 0.28 8.00 21.7377 -7.99685

Late summer 64 64 128 0.50 0.69 64.00 71.34426 -6.95257

374 297 671 0.56 7.445001

f fhat resid f*ln(f/fhat) G2

Early spring 29 22.3 6.7 7.625

Late sprinG2 273 259 14.4 14.769

Early summer 8 21.7 -13.7 -7.997

Late summer 64 71.3 -7.34 -6.953

7.445 14.89
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MTB> cdf 14.89;
SUBC> chisquare 3.
  14.89     0.9999

3.  Evaluate model.
Structural model contains no regression lines, so no need to check bowl/arch.

 For generalized linear model we check the homogeneity assumption at this point,
to make sure the binomial error assumption is correct.
In this analysis we have 4 residuals, not enough to undertake evaluation.

4. Population As above.

5. Decide on mode of inference.  Is hypothesis testing appropriate?
As above.

6.   HA / HA pair for season term.

 HA Hence:βssn≠ 0 e Ssn
β

≠ 1

Ho Hence:βSsn = 0 e Ssn
β

= 1

statistic = G2

probability distribution = chisquare
  " = 5%

7.  Calculate improvement in fit ())))G2) due to explanatory variables. 
ANOVA table is replaced  by Analysis of Deviance table.
 Source  df  Deviance = G2  )G2

Intercept e$ref 1
Ssn  e$Ssn 3 = 4!1 14.89

Calculate p-value from Chisquare distribution.
Is this improvement )G2 better than by chance ?

 More than 99.99% of the G2-statistics obtained by
chance will be less than our observed G2 = 14.89, 
The p-value reported for )G2 = 14.89 is p < 0.0001

Note )G2 is less than for the log-linear analysis 

8.  Calculate randomized p-value ?  Too few df to evaluate assumptions.
Assumptions assumed to be correct for binomial error..

9. Declare decision.   p < 0.0001  hence reject Ho and accept  HA

Ho: e$Ssn = 1
Ho: pbR|early Sp  =  pbR|late Sp  =  pbR|early Su  =  pbR|late Su

We accept the alternative hypothesis

Ho: e$Ssn … 1
HA: proportions are not equal.

Frequency of bright red beetles depends on season.
  ()G2 = 14.89, df = 3, p < 0.0001)

Next we evaluate the change in proportion in binomial data via odds ratios.
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Bright red Not bright red p/q
Early spring 29 11 2.6
Late spring 273 191 1.4
Early summer 8 31 0.26
Late summer 64 64 1

MTB> cdf 14.89;
SUBC> chisquare 3.
  28.596   0.9999

1.  Construct the  model
  Response variable.   p/(1-p) = odds of red beetles in each season.
  Explanatory variables.    Ssn = season (4 categories, 3 parameters)

This is the alternative model
( ) ( )

Odds e e BinomialError
ref Ssn= +

β β

e#ssn is the change in odds of encountering a red beetles in each of 3 seasons,
compared to the first season.  e#ssn stands for 3 cross-product ratios. 
This model has 1 factor (season).
If we drop the season term, the model becomes.

This is the null model 
( )

Odds e BinomialError
ref

= +
β

(no change in odds)

The difference between the null and alternative models is  the improvement in fit.

2.  Execute.  

We use binomial error and logit link.

3.  Use parameter estimates to calculate residuals, evaluate model.
As above.

4. Population As above.
5. Decide on mode of inference.  Is hypothesis testing appropriate?

As above.
6.   HA / HA pair for season term. As above
7.  Calculate improvement in fit ())))G2) due to explanatory variables. 

)G2 from Minitab output, put into Analysis of Deviance Table.

 Source  df  Deviance = G2  )G2

Intercept e$ref 1
Ssn  e$Ssn 3 = 4!1 28.596

Calculate p-value from Chisquare distribution.
Is this improvement )G2 better than by chance ?
The Minitab command to compute the p-value is

 
 More than 99.99% of the G2-statistics obtained by

chance will be less than our observed G2 = 28.596, 
The p-value reported for )G2 = 28.596  is p < 0.0001

Note that )G2 is the same for this analysis as for the log linear model.
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Logistic Regression Table
                                                       Odds        95% CI
Predictor           Coef    SE Coef        Z     P    Ratio    Lower    Upper
Constant          0.9694     0.3541     2.74 0.006
C2            
 Early summer    -2.3239     0.5316    -4.37 0.000     0.10     0.03     0.28
 Late spring     -0.6122     0.3665    -1.67 0.095     0.54     0.26     1.11
 Late summer     -0.9694     0.3958    -2.45 0.014     0.38     0.17     0.82

8.  Calculate randomized p-value ?  Not needed, error structure is appropriate.

9. Declare decision.   p < 0.0001  hence reject Ho and accept  HA

10. Examine parameters of biological interest.

Odds in early spring are lower than early summer (OR = 0.10) or 
 late summer (OR = 0.38)

Odds in early spring does not differ from late spring OR = 0.54, (confidence limits
include 1.00).
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