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Model Based Statistics in Biology.    
Part V.  The Generalized Linear Model. 
Chapter 18.1   Logistic Regression (Dose - Response) 
 
 
 
 
 
 
 
 
 

 
    on chalk board 

 
ReCap Part I (Chapters 1,2,3,4)  Quantitative reasoning 
ReCap Part II (Chapters 5,6,7)  Hypothesis testing and estimation 
ReCap (Ch 9, 10,11) GLMl with a single explanatory variable. 
ReCap (Ch 12,13,14,15) GLM with more than one explanatory variable 
ReCap (Ch 16,17) 
ReCap (Ch 18) 
Binomial data are analyzed within the framework of the generalized linear model. 
The response variable is the odds, calculated from the proportion of cases p. 
 
 
 
 
Wrap-up.  
We analyze dose-response data with logistic regression, in which the response 
variable is the odds, and relation of odds to dose is exponential.   
 
 
 
 
 
 
  

ReCap.   Part I (Chapters 1,2,3,4), Part II (Ch 5, 6, 7) 
ReCap    Part III (Ch 9, 10, 11), Part IV (Ch 13, 14) 
18 Binomial Response Variables 
18.1 Logistic Regression (Dose-Response) 
18.2 Single Factor.  Prospective Analysis  
18.3 Single Factor.  Retrospective Analysis  
18.4 Single Random Factor.  
18.5 Single Explanatory Variable. Ordinal Scale.  
18.6 Two Categorical Explanatory Variables  
18.7   Logistic ANCOVA 

Ch18.xls 

Today: Binomial response variables.   
 Logistic regression (dose-response analysis).
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Introduction.   
 
Laboratory tests of known carcinogens are conducted at relatively high doses to 
produce measurable rates of response in a small sample of animals. These results 
must then be extrapolated to lower doses that correspond to anticipated human 
exposure levels.  To do this we need a realistic model with good estimates of 
parameters.   
 
Aflatoxin is a knwon carcinogen.What is the dose-response 
relation for aflatoxin B_1? 
 

N = number of experimental animals fed  aflatoxin B_1, 
 
Ntumor = number developing liver tumors 
 
Dose = amount fed to animals (ppb) 
 
Data from D.W. Gaylor (1987) . Linear nonparametric upper limits for low dose 
extrapolation. Pp. 63–66 in American Statistical Association: Proceedings  
of the Biopharmaceutical Section. 
 
The data are binomial.  Use of a normal error 
can be expected to produce biased parameter 
estimates.  Regression of a binomial variable 
against an explanatory variable is called logistic 
regression,  a special case of the generalized 
linear model. 
 
Preliminary calculations-- proportions and odds.. 
 

Dose Cases Cases Proportion Odds
  w/ tumors w/tumors  

ppb N Ntumor p=Ntumor/N p/(1-p)

     
0 18 0 0.0000  
1 22 2 0.0909 0.1000
5 22 1 0.0455 0.0476
15 21 4 0.1905 0.2353
50 25 20 0.8000 4.0000

100 28 28 1.0000  
 
The odds of having a tumor increase with dosage.   
The increase is not a linear function of the dose.   
For dose-response analysis, we assume that the relation is exponential. 
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1.  Construct Model   
N is number of experimental animals at each dosage.  
Ntumor is number of animals that develop tumors. 

  p is the proportion of animals having tumors at each dosage. Ntumor/N 
The odds of developing tumors are p/(1-p). 

 
 Verbal model.  

The odds of developing tumors increase with dose. 
 

Graphical model 
The plot of odds versus dosage shows a 
curvilinear relation. 

 
  The plot of log odds versus dosage shows a 

linear relation. Dose has a multiplicative rather 
than additive effect on odds of developing 
tumors. 

 
Response variable:  odds of developing tumors 
Explanatory variable: dose of aflatoxin B_1 

 

1

p
Odds

p



  Definition of odds 

 
The formal model is written with multiplicative effect and binomial error. 

Distribution ௧ܰ௨௠௢௥~݈ܽ݅݉݋݊݅ܤሺܰ,  ሻߨ
Link Odds = eη  This is called a logit link. 
ߟ  ൌ ௢ߚ ൅  ݁ݏ݋ܦ஽௢௦௘ߚ

 
We use a 3 line format to write the model. 
 We need to state the error model.  
 We no longer use the ܻ ൌ ௫ܺߚ∑	 ൅  format because we no longer ߝ	

can use the unscaled residuals ε.  We will be using scaled residuals 
when we use a non-normal error.  

 We need to state the link between the response and explanatory 
variable.  

 
For logistic regression we use a logit link. 
 Odds are a natural way to interpret changes in risk.  
 Odds ratios have the convenient property that we can invert them.  If 

the odds of developing a tumor double with each increment in dose, 
then the odds are halved with each decrement in dose.  This property 
does not apply to percentages.  
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Data Gaylor; 
  Input N Ntumor Dose; 
  Cards; 
18   0   0 
22   2   1 
22   1   5 
21   4  15 
25  20  50 
28  28 100 
; 

Proc Genmod; 
  Model Ntumor/Ncase = Dose/ 
  Link=logit dist=binomial type1 type3; 

 Graphical display (shown above) supports the idea of multiplicative 
effect on dose on odds of developing tumors.  

 The logit link puts multiplicative effects on an additive scale, which is 
convenient for statistical analysis.  

 The logit link avoids log transforming the response variable, which 
usually produce biased estimates of parameters. 

 
2.  Execute analysis. 
Place data in model format: 

The binomial response variable in two columns, cases and positives. 
Column labelled N, with response variable, number of animals 
Column labelled Ntumor, with response variable # of animals with tumors 
Column labelled Dose, with explanatory variable Dose (in ppm) 

 
 

SAS data definition file 
 
 
 
 
 
 

 
Spreadsheet format for input to graphics interface 
statistical packages –SPSS, Minitab, etc.  
 
 
 
 
 
 

Code the GzLM model statement in the statistical package. 
 
  
SAS file 
 

 
 

 
R command lines

GaylorGzLM <- glm(Ntumor/N ~ Dose, family = binomial(link = logit), 
weights = N, data = Gaylor) 
summary(GaylorGzLM) 
plot(GaylorGzLM) 
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2.  Execute analysis. 
 
 
 
 

Minitab command lines 

 
 
 
 
 
 
 
 

Minitab sequence to produce line commands 
 

  
3.  Use residuals to evaluate model. 
There are several ways to scale the residuals.  We will use the deviance residuals, 
which are the default in most cases.   
 
A.  A straight line model is 
acceptable, no bowl or arch 
in residual plot. 
 
B1.  A binomial error 
structure was used to fit the 
model.  This was expected 
to remove any change in 
vertical spread in the 
residual vs fit plot.   
There are too few residuals to evaluate homogeneity assumption. 
 
B2. We expect the scale 
residuals to be normally 
distributed. Confidence 
limits and p-values assume 
normal errors. The 
residuals are acceptably 
normal based on the 
quantile-quantile plot.  
 
 

Click Stat 
Click Regression 

 Click Binary Logistic Regression 
Click Success, place column of Ntumor,  
Click trials, place column of Ncase 
Click Model, place column with Dose 
Click Storage (optional)  
Click Pearson residuals, Event probability, ok 

MTB > BLogistic 'Ntumor' 'Ncase' = Dose;   as of 2002 
SUBC>   ST; 
SUBC>   Logit; 
SUBC>   Brief 2. 
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4. What is the evidence?  
Estimate change in deviance.  
Calculate LR 
 
LR = e84.5/2 = 2.2 x 1018 
 
Strong evidence (LR > 1000) that tumors 
increase with dose.  

 
5. Mode of inference. 
 Frequentist? Yes.  We take the  population to be an infinite number of  

repetitions of the experimental protocol. 
 Decision theoretic?   Yes.  Type I error and Type II error have identifiable costs 

because aflatoxins regularly occur in improperly stored staple commodities 
including corn, cotton seed, millet, peanuts, rice, sesame seeds, sorghum, tree 
nuts, wheat, and a variety of spices. The United States Food and Drug 
Administration (FDA) action levels for aflatoxin present in food or feed is 20 
to 300 ppb.  The upper level is about 1/3 of the minimum dose in this study.   

 
 6.  Population, sample, hypotheses.  

Inference is to a population of many repeats of  the same experiment with 
similar animals and the same suspected carcinogen, dosages, experimental 
protocol, and sample sizes.  The sample was large enough to establish 
carcinogenicity at doses of 1 ppm or more.   

 
7.  Analysis of Deviance  

ANODEV  Table Binomial model 
Terms added sequentially, 1st to last 

Df Resid.Dev Δ df Δ Deviance 
NULL 5 116.5
Dose 4 32.0 1 84.5

 
Calculate Type I error from ΔDeviance using χ2 distribution with 1 df. 
p  = 4 x 10-11 

 
8.  Recompute Type I error if sample small and assumptions not met. 
 Assumptions met. 
 
9.  Statistical conclusion. 

 We reject the null hypothesis at a fixed Type I error = 5%. 
 ∆Deviance = 4.7,  p = 0.03 on 1 degree of freedom, from χ2 distribution 

  

ANODEV  Table Binomial model 
Terms added sequentially, 1st to last 

Df Resid.Dev Δ df Δ Deviance 
NULL 5 116.5 
Dose 4 32.0 1 84.5
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10. Science conclusion. 
 Interpret the parameters 
 
 
 
 
 
   Minitab output 

 3.0360 0.048oe e
     Model odds for zero dose 

 ݁ఉವ೚ೞ೐ ൌ 	 ݁଴.଴ଽ଴଴ଽ ൌ 1.094 Change in odds for each dose increment 
 
The confidence limits for the odds ratio of 1.094 are narrow: 1.06 to 1.13 
The confidence limit excludes the null hypothesis (OR = 1.00) that the odds do not 
change with dose. 
 
With these estimates we can compute the expected odds at any dose within the 
range of the study. 
 

 50 3.036 0.09009 50 1.469 4.34o Dosee e e
         

 
The expected odds of developing a tumor at a dose of 50 ppm are 4.34 to 1. 
The expected odds of developing a tumor at a dose of 33 ppm are 0.94 to 1. 
 
We can compare the dose response relation (OR = 1.094) with other dose-response 
relations because we have a standard error on the log odds ratio 

ln OR = 0.09009 + 0.01456 
 
  

Logistic Regression Table 
                                                   Odds        95% CI 
Predictor       Coef    SE Coef        Z     P    Ratio    Lower    Upper 
Constant     -3.0360     0.4823    -6.30 0.000 
Dose         0.09009    0.01456     6.19 0.000    1.094     1.06     1.13 
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Extra (beyond the curriculum) 
 
In this analysis we used a binomial error, for which the response variable is the 
odds ratio.  What if we had used the proportion p instead?  Proportions are 
multiplied, not added.  So we use the log link. 
 

Distribution ௧ܰ௨௠௢௥~ܲ݊݋ݏݏ݅݋ሺߣሻ 
Link Y = eη  This is called a log link. 
ߟ  ൌ ௢ߚ ൅     ݁ݏ݋ܦ஽௢௦௘ߚ
  

 
We obtain different parameter estimates and a different ANODEV table.  
 

  
 SAS output 
 
We obtain 95% confidence limits that include zero (no dose-response relation). 
 
We obtain less convincing evidence: 
 Poisson  LR = e (3.23/2) = 5.03 
 
 Binomial LR = e84.5/2 = 2.2 x 1018 
 
Extra: Your turn. 
 
Before the advent of exponentially increasing computing power in the late 20th 
century, and the rapid advances in software in the present century, analysts were 
forced to rely on a crude approximation for binomial data – a normal error 
structure with proportions as the response variable.  Run the analysis of the tumor 
data with a normal error, identity link, and proportion of animals with tumors as 
the response variable.   
Compare the analysis to the binomial analysis with respect to weight of evidence 
(the likelihood ratio), width of 95% confidence limits, and whether the 95% limits 
exclude zero (no dose-response effect).  

                          Standard       Wald 95%          Chi- 
 Parameter  DF  Estimate     Error   Confidence Limits   Square  Pr > ChiSq 
 
 Intercept   1   -1.4209    0.1893   -1.7918   -1.0500    56.37      <.0001 
 Dose        1    0.0142    0.0079   -0.0013    0.0297     3.23      0.0722 
 Scale       0    1.0000    0.0000    1.0000    1.0000


