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Model Based Statistics in Biology.    
Part V.  The Generalized Linear Model. 
Chapter 17.5   Poisson ANCOVA 
 
 
 
 
 
 
 
 
 
 

 
    on chalk board 

ReCap Part I (Chapters 1,2,3,4)  Quantitative reasoning 
ReCap Part II (Chapters 5,6,7)  Hypothesis testing and estimation 
ReCap (Ch 9, 10,11) The General Linear Model with a single explanatory 
variable. 
ReCap (Ch 12,13,14,15) GLM with more than one explanatory variable 
ReCap (Ch 16,17) 
 
 
 
 
Wrap-up.  
 
 
 
 
 
 
 
 
 
 
 
 
 

ReCap.   Part I (Chapters 1,2,3,4), Part II (Ch 5, 6, 7) 
ReCap    Part III (Ch 9, 10, 11), Part IV (Ch 13, 14) 
17  Poisson Response Variables 
17.1    Poisson Regression 
17.2    Single Categorical Explanatory Variable 
   (Log-linear Model) 
17.3    Single Categorical Explanatory Variable  
    (Sensitivity Analysis) 
17.4    Two or More Categorical Explanatory Variables 
17.5    Poisson  ANCOVA 
17.6   Model Revision 

Ch17.xls 

Today:    Poisson response variable with one categorical and one ratio scale 
explanatory variable.   
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Introduction.   
Many of the analyses undertaken in the biological, environmental, and social 
sciences are concerned with data that include zero counts per unit.  Consequently, 
the variability around fitted valued near zero will be small, compared to variability 
around larger fitted values.  A plot of errors (residuals versus fits) will fan out, 
widening out to the right at larger fitted values.  If a normal error is used, the lower 
confidence will sometimes be negative—it will include impossible values.  We 
certainly do not want to produce a confidence limits on fish counts than include 
negative fish! 
A commonly used solution to this problem is to transform the response variable to 
a log scale.  Unfortunately this remedy has bad side effects.  First of all, we have to 
convert zeros to “almost zero” (0.01 or 0.001).  The choice of “almost zero” yields 
different estimates.  Worse yet, log transformation results in biased estimates of 
parameters--means, contrasts between means, and slopes.  To remedy these 
problems log-linear models were developed in the latter quarter of the 20th century.   
Bishop et al (1975) provided the first comprehensive text.   Log-linear models are 
covered in many subsequent texts, where they are called G-tests, contingency tests, 
or sometimes log-linear analyses.  In almost every case log-linear models refer to  
categorical variables. Within the framework of the generalized linear model we can 
include regression variables (covariates) in conjunction with one or more 
categorical variables.  
 
Poisson ANCOVA. 
Log linear models and Poisson regression are special 
cases of the generalized linear model.  Having learned 
how to write Ancova models, with at least one 
categorical variable and one covariate, we can extend 
these models to Poisson variables.  Poisson Ancova is 
an apt name.  This makes it clear we are not using a 
normal error structure, which is implied by the term 
Ancova when it was proposed. 
 
The classic example of Poisson data is the number of 
deaths by horse kick for each of 16 corps in the Prussian 
army, from 1875 to 1894, assembled and published by 
Bortkiewicz (1898). 
 
The unit of analysis is a single year in each corps.  The 
number of deaths per year in the four corps shown here 
ranged from 0 to 3. 

Year Guard First 2nd 3rd 
1875 0 0 0 0 
1876 2 0 0 0 
1877 2 0 0 0 
1878 1 2 2 2 
1879 0 0 0 0 
1880 0 3 2 2 
1881 1 0 0 0 
1882 1 2 0 0 
1883 0 0 1 1 
1884 3 0 1 1 
1885 0 0 0 0 
1886 2 1 0 0 
1887 1 1 2 2 
1888 0 1 1 1 
1889 0 0 1 1 
1890 1 2 0 0 
1891 0 0 0 0 
1892 1 3 2 2 
1893 0 1 0 0 
1894 1 0 0 0 

16 16 12 12 
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1.  Construct Model   
Verbal model.  
Safety of conscripts into the Prussian army was hardly a concern in the late 19th 
century. Thus we expect no change over time in number of deaths by horsekick in 
4 different corps, Guard, First, Second, and Third.  Duties differed in Guard and 
First compared to Second and Third, so we might see some differences among 
corps because of different in exposure of conscripts to horses. 
 
Graphical model 
A plot of number of total deaths in all 4 
corps shows little or no change by year. 
Draw your estimate of the best fitting trend 
line through the data.  
 
Formal model 
Response variable: Deaths/year, each corps 
Explanatory variables: 
  Year.  Continuous variable (ratio scale) 
  Corps.  Categorical variable. 
 
Choice of error model. 
As a rule of thumb, a Poisson error model is appropriate where counts are 
produced at low rates by a random process, resulting in mean values less than 10 in 
order of magnitude.  That is, counts are ‘rare and random.’  The technical criterion 
is that the variance in counts is roughly the same as the mean count.  The 
distribution of counts appears to fit a Poisson distribution. The variance to mean 
ratio is close to unity, as expected of Poisson distribution. 

Guard First 2nd 3rd Total   
16 16 12 12 56 Deaths  

      
1.00 1.39 1.1 1.1  Var/mean

    2.28 Total  
 
Choice of link.  For log-linear models we use a log link.  This describes percent 
change from year to year and from corps to corps.  An identity link (additive 
effects) is possible but inconsistent with the idea that we take the product or ratio 
of percentages.  
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1.  Construct Model   
 Distribution ݊݋ݏݏ݅݋ܲ~݄ݐܽ݁ܦሺߣሻ 
 Link Death = eη   
 Structural model ߟ ൌ ௒௘௔௥ߚ ∙ ݎܻܽ݁ ൅ ஼௢௥௣௦ߚ ∙ ݏ݌ݎ݋ܥ ൅ ௒∙஼ߚ ∙ ݎܻܽ݁ ∙  	ݏ݌ݎ݋ܥ
 
2.  Execute analysis. 
The data in table format need to be re-organized to model format.  
 Column labeled Count, with response variable # of deaths 
 Column labeled Year, the explanatory variable 
 
 
 
 
 
 
 
 
 
 
 
 

SAS command file 
Data appear in a similar format in packages with a spreadsheet  interface.  
 
2.  Execute analysis. 
Code the GzLM model statement in statistical package 
ߟ  ൌ ௒௘௔௥ߚ ∙ ݎܻܽ݁ ൅ ஼௢௥௣௦ߚ ∙ ݏ݌ݎ݋ܥ ൅ ௒∙஼ߚ ∙ ݎܻܽ݁ ∙   	ݏ݌ݎ݋ܥ
 
 
 
 
    SAS command file 
 
  

data d1; 
 input Year 1-4 Deaths 7 Duty $ 10 Corps $ 12-16; 
cards; 
1875  0  A guard 
1876  2  A guard 
. 
. 
1893  0  A guard 
1894  1  A guard 
1875  0  A first 
1876  0  A first       (Etc for 80 observations) 
; 

Proc Genmod; 
  Model Deaths = Year/ 
  Link=log dist=poisson type1 type3; 
  output out=outB p=pred r=res; 
PROC PLOT data=outB; plot res*pred/vref=0; 
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3.  Evaluate model 
A.  A straight line was used 
in the model.  Acceptable? 
Yes. No bowls or arches 
 
B1. A Poisson error was used 
to eliminate change in 
variability (vertical spread) 
with change in the fitted 
values.  Acceptable? Yes. 
Fans and spindles not 
evident. 
 
Deviance residuals are used 
for diagnosis, not simple or 
raw residuals. 
 
B2. A Poisson error structure was used to fit the model.  This was expected to 
remove any change in vertical spread in the residual vs fit plot. Poisson error 
acceptable?  Yes. Vertical spread in residuals from left to right in the graph shows 
not fan or spindle pattern. 

  
 
B3. Confidence limits and p-
values assume normal errors. The 
quantile-quantile plot shows 
acceptably normal errors.  
  

Fits - Guard Corps

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

R
e

si
du

al
s

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

Residual Value
-2 -1 0 1 2 3

C
um

ul
at

iv
e 

F
re

qu
en

cy

1

10

30

50

70

90

99



Chapter 17.5 6

4. What is the evidence?  
 
 
 
 
 
 
The improvement in fit for the fully reduced model (all three terms) relative to the 
null model, is 98.5389 - 96.0891 = 2.45.   
LR = exp(2.45/2) = 3.4 
There is insufficient evidence (LR<10) for the model with all three terms. Hence 
no evidential support for detailed analysis of the three components. 
 
5. Mode of inference. 
 Priorist? No. We have a suitable probability model, but we lack a definite 

prior value of the Poisson parameter.   
 Evidentialist? Yes.  We have a suitable probability model, 
 Frequentist? Perhaps.  The number of deaths per year falls within a range 

that suggests a stable value for the rate parameter λ, deaths/year. 
 Decision theoretic?    No.  We have no way of gauging Type I versus Type II 

error in declaring a decision on this data. Nor can we define the 
costs and risks of Type I error.  

 
 6.  Population, sample, hypotheses.  
This is an observational study, with many uncontrolled sources of variation.  The 
population can be defined by a Poisson model of chance outcomes from the 
conditions that prevailed in an army consisting of conscripts, and where military 
mobility was by horses. 
The sample consists of four fully censused military units where change in practice 
is suspected not to have occurred over 2 decades. We have insufficient evidence 
for change in death rate over time or across corps, so we form no hypotheses about 
each term.   
 
  

                       LR Statistics For Type 1 Analysis
                                                   Chi- 
          Source          Deviance        DF     Square    Pr > ChiSq 
          Intercept        98.5389                                    
          Corps            97.3921         3       1.15        0.7658 
          Year             97.3577         1       0.03        0.8529 
          Year*Corps       96.0891         3       1.27        0.7366 
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7.  ANODEV Table. 
In the absence of evidence for the omnibus model there is no logic in proceeding to 
analysis of individual terms.   
 
 
 
 
 
 
10.  Analysis of parameters of biological interest.  
The parameter of interest is λ, the number of deaths per year by horsekick over 2 
decades.  The estimate of this parameter is 

 መ= (56 deaths / 20 years) / 4 corps)  = 0.7 deaths/corps-yearߣ 
The 6 parameters in the Poisson Ancova provide no additional information. 

        LR Statistics For Type 3 Analysis
                                            Chi- 
                 Source            DF     Square    Pr > ChiSq 
 
                 Corps              2       1.12        0.5719 
                 Year               1       0.05        0.8313 
                 Year*Corps         3       1.27        0.7366 


