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Model Based Statistics in Biology.    

Part V.  The Generalized Linear Model. 

Chapter 17.4   Two or More Categorical Explanatory Variables. 
 

 

 

 

 

 

 

 

 

 

 
     

 

 
on chalk board 

ReCap Part I (Chapters 1,2,3,4)  Quantitative reasoning 

ReCap Part II (Chapters 5,6,7)  Hypothesis testing and estimation 

ReCap (Ch 9, 10,11) The General Linear Model with a single explanatory 

variable. 

ReCap (Ch 12,13,14,15) GLM with more than one explanatory variable 

ReCap (Ch 16,17) 

 

 

 

 

 

 

 

 

 

Wrap-up.  
Count data are frequently presented as cross-classified counts. 

We use a log linear model (Poisson response variable, multiple factors) to test for 

independent effects of two (or more) factors on counts.  

No causal ordering of cross classified counts. 

ReCap.   Part I (Chapters 1,2,3,4), Part II (Ch 5, 6, 7) 

ReCap    Part III (Ch 9, 10, 11), Part IV (Ch 13, 14) 

17  Poisson Response Variables 

17.1    Poisson Regression 

17.2    Single Categorical Explanatory Variable 

 (Log-linear Model) 

17.3    Single Categorical Explanatory Variable  

 (Sensitivity Analysis) 

17.4    Two or More Categorical Explanatory Variables 

Classical two way contingency test 

Model based analysis 

  BACI design (to be added) 

17.5    Poisson  ANCOVA 

17.6   Model Revision 

Ch17.xls 

Today:    Poisson response variable with two or more categorical explanatory 

variables. 

First example.  Two-way Contingency Test (Ant Acacia) 

Second example:  Multiway Contingency Test (trees * woodlands) 

Third example: Environmental Impact Assessment 

    Before-After Control-Impact (BACI) Design. 

    Example from text by Green (Fixed * fixed) 
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Leaf Type 

Soil   Pubescent     Smooth       Totals 

Serpentine  12  22  34 

Not serpentine 16  50  66 

    Totals  28  72         100 

Background 

Serpentine minerals form where rocks extruded from deep in the earth’s interior  

are metamorphosed at convergent plate boundaries where an oceanic plate is 

pushed down into the mantle. Due to their origin, serpentine soils have low 

calcium-to-magnesium ratio and lack many essential nutrients, notably nitrogen, 

phosphorus, and potassium. Serpentine soils contain high concentrations of metals, 

including chromium, cobalt, and nickel. These challenging conditions restrict the 

number of plant species that can persist in serpentine soils. Serpentine soils have a 

high rate of rare endemic species, species found only in serpentine soils.  

Morphological adaptations to dry conditions and high light environments (and 

possible nutrient deficiencies) include fleshy leaves, leaf hairs, and protective 

pigments. Here are data on one such adaptation,  leaf type. Data are  from Box 17.6 

in Sokal and Rohlf (2012) 
 
Example: Tree counts.    Classical two-way contingency test. 
A plant ecologist examines 100 trees of a rare species from a 400 square mile area. 

Each tree is recorded as rooted in serpentine soil or not. Leaves are classified as 

pubescent or smooth.  
 
In this example the number 

of trees examined was fixed 

at 100.  Leaf is scored by 

type, not by presence or 

absence.   Soil is scored by 

type, not  by presence or 

absence.    
 
We have two factors.  We are interested in the interaction term (does leaf type 

depend on soil type?).  Note the resemblance to the two-way ANOVA. 
 
In a two way table, the interaction term is computed as the cross-product ratio, 

which measures the equality of proportions. 

Cross product ratios: 
a c a d

b d b c

⋅
÷ =

⋅
  

12 16
1.7045

22 50
÷ =  

 

The odds ratio by rows    
12 16

1.7045
22 50

÷ =  

 
The odds ratio by columns has the same value. 
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Example: Tree counts.    Classical two-way contingency test. 
 
We begin with the contingency test using the textbook formula. 
 
Here is the formula for the G-statistic. 

2* ln
ˆ

f
G f

f

  
= ∑ ⋅   

  
     

   
 

 

 
 

LR = e
1.33/2

 = 1.94 

The observed cross product ratio is no more likely than CPR = 1.  
 
Tree counts.  Model-based Analysis 
Now, for comparison, we analyze the same data as a generalized linear model with 

a Poisson error. 
 
1.  Construct the model 

Verbal model.  Leaf type depends on soil type. 

Graphical model.  Ratio of pubescent to smooth, plotted against soil type. 

List variables 

   C = count of trees in a class. 

 Ltype = leaf type (2 categories) 

 Stype = soil type (2 categories) 

  

     Pubescent      Smooth  

Serpentine  12  22  34 

NonSerpentine 16  50  66 

       28  72         100 
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Data A; 

  Input Count Leaf $ Soil $; 

  Cards; 

    12 Pbsc   Serp 

    22 Smooth Serp 

    16 Pbsc   NonSerp 

    50 Smooth NonSerp 
; 

1.  Construct the model 
 
 List dependencies or each pair of variables. 

  Count depends on leaf type and soil type.  

  Soil type does not depend on the other two variables 

  Leaf type depends on soil but not count.  

 The verbal model is Count (Poisson) depends on soil and leaf type. 

 For count data we use the 3 part notation for a generalized linear model. 
 
 Distribution �	~	�������(
) where λ is mean count per unit. 

 Link � = 
� 
 

In the previous analysis we saw that the main effects (leaf type and soil type) 

were multiplicative. 

�� = �̂������̂���� ∙ � 
 

In order to construct a model having multiplicative effects of the explanatory 

variables we use a log link between the response variable (Count) and the 

structural model. 

�� = 
��� !"∙�����#�$∙���� 

where: �̂����� = 

��� !"∙����� 

  �̂���� = 

�$∙���� 

 
To evaluate interactive effect (does leaf type depend on soil type?) we add the 

interaction term to the list of explanatory terms.  The structural model is:   

 % = &' + &����)��* + &�����+,-�
 + &�∙�)��* ∙ +,-�
 

 The expected values in the 2 way table will be: 


�.    = count in reference class 


�������   = relative frequency * leaf type = 0 or 1 


�$����   = relative frequency * soil type = 0 or 1 


�$∙�����∙�����  = cross-product ratio 
 

2.  Execute analysis.   
Arrange data into 

model format. 
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Proc Genmod;  Classes Leaf Soil; 

  Model Count = Soil Ltype Soil*Ltype/ 

  Link=log dist=poisson type1 type3; 
  Output out=B p=fit resdev=res; 

CountMod <- glm(formula = Count ~ Soil * Ltype, 

 family = poisson(link = log), 

 data = AHtable55) 

 
   SAS command file 

 

2.  Execute analysis.   

   % = &' + &����)��* + &�����+,-�
 + &�∙�)��* ∙ +,-�
 
 

Use model to 

execute analysis 
 
 
   R script 
 

 

 

 
 

   SAS command file 

 

Obtain parameter estimates. 

 

 

 

 

 

 

 

 
 

 SAS output file 

 

 
�. = 
/.'12 = 22 count, reference group 

120.6061 0.545
22

Ltypee e
β −= = =  relative frequency, leaf type 

500.8210 2.27
22

Stypee e
β

= = =  relative frequency, soil type 

*
22 120.5333 0.587
50 16

L Se e
β −= = = ÷  cross-product ratio 

 

3.  Use parameter estimates to calculate residuals, evaluate model. 
  We cannot evaluate assumptions from the residuals. This is a saturated model, 

there are as many parameter estimates as observations (rows of data) and so 

there are no residuals. 
 
  

Analysis of Parameter Estimates 

  

                                           Standard       Wald 95%       

Parameter                    DF  Estimate     Error   Confidence Limits 

 

Intercept                     1    3.0910    0.2132    2.6732    3.5089 

leaf       Pbsc               1   -0.6061    0.3589   -1.3095    0.0972 

leaf       Smooth             0    0.0000    0.0000    0.0000    0.0000 

soil       NonSerp            1    0.8210    0.2558    0.3195    1.3224 

soil       Serp               0    0.0000    0.0000    0.0000    0.0000 
leaf*soil  Pbsc     NonSerp   1   -0.5333    0.4597   -1.4342    0.3676 
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4.  What is the evidence? 

 The ANODEV table shows the change in deviance (∆G = improvement in fit) 

due to each term in the model.  This is labelled Chi-square in the SAS output. 

 
LR = e

1.33/2
 = 1.94 The model with the interaction term is just as likely as 

the model without the term. 
 
5.  Choice of inferential Mode. 

 Priorist?  No.  We have insufficient prior information to set up a  

  defensible prior probability. 

 Frequentist? Yes.  We have a measurement protocol that is repeatable.  

 Evidentialist ? Yes.  This is an observational study with many uncontrolled 

sources of variance. We have no way of gauging Type I versus 

Type II error.  Nor any consideration of risk or cost of Type I 

error to use in declaring a decision against a fixed Type I error. 

 Decision 

 Theoretic? We will use a fixed Type I error to illustrate an analysis of 

sample size needed to detect an effect at a rate of α = 0.05.   
 
Population.  If the trees were sampled randomly, then the population is all of the 

trees of that species in the 400 square mile area.  If the trees were sampled 

haphazardly, then the sample might still be taken as representative of the 

population in that area.  We may wish to infer, informally, to similar locations 

outside the area. 
 
Likelihood ratios. 

HA : 
* 0Leaf Soilβ ≠  * 1Leaf Soile

β
≠  frequency depends on leaf and soil type,   

 cross-product ratio differs from unity. 

Ho : * 0Leaf Soilβ =  * 1Leaf Soile
β

=  frequency does not depend on leaf  and  

  soil type,    cross-product ratio equal to unity. 

 

 

  

                      LR Statistics For Type 1 Analysis 

                                                   Chi- 

           Source         Deviance        DF     Square    Pr > ChiSq 

           Intercept       31.7936                                    

           leaf            11.7548         1      20.04        <.0001 

           soil             1.3325         1      10.42        0.0012 

           leaf*soil        0.0000         1       1.33        0.2484 
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Likelihood ratios. 

 
We compare the likelihood of two models, one with the interaction term, one 

without. 

HA : 
( ) ( ) ( ) ( )*ref Leaf Soil Leaf Soil

Leaf Soil Leaf Soil
f e e e e

β β β β⋅ ⋅ ⋅ ⋅
=  

Ho : 
( ) ( ) ( )ref Ltype Stype

Leaf Soil
f e e e

β β β
=  

 
9.  Statistical conclusion.  
   The fit to the saturated model (4 parameters) is perfect.  G = 0. 

 The fit to the model without the interaction term is G = 1.33. 

 The change in fit is  ∆G= 1.33   

From this we calculate  LR = e
(1.33 / 2)

 = 1.95 

 LR < 10. 

The model with no interactive effect is just as likely as the model with an 

interactive effect.   
 
10. Science conclusion.  Evaluate parameters of biological interest.   

In this analysis only the interaction term was of interest. 
 
The ratio of pubescent to smooth was 12 / 22 = 0.545 in serpentine soil 

The ratio was 16 / 50 = 0.32 in non serpentine soil.  The ratio in non-serpentine soil 

was just as likely as that in serpentine soil.   
 
10. Prospective power analysis.  

We begin with the Type I error. 

∆G= 1.33    df = 1  p = 0.2484 from χ2 distribution. 

How large a sample would we need to detect a difference, at a fixed error rate 

of α = 5%? 

To find out we increase the frequencies by successively greater multiples until 

∆G reaches 3.84, the critical value of G (df = 1) at α = 5%. 
 
∆G reaches 3.84 when all 4 frequencies have been multiplied by 2.88.  This 

results in a table with 288 trees, in the same proportions as the table with 100 

trees. 

 

 

 

 

 

  

  f   Pubescent Smooth 

Serpentine       34          64      98 

NonSerpentine      46      144  190 

        80      208  288 
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10. Prospective power analysis. 

We would  need 100 · 2.88 = 288 trees to detect a change in proportion at an 

error rate fixed at 5%. 
 
A similar calculation can be done with respect to a likelihood ratio considered 

adequate evidence.   

We would need 100*3.46 = 346 trees to attain a likelihood ratio greater than 

LR =10  (∆G = 4.61). 

  



Chapter 17.4 9

1 7 2  

1 10 0  

1 12 0  

1 6 0  

2 4 0  

2 5 4  

2 0 0  

2 0 0  

3 4 0  

3 1 0  

3 1 0  

3 5 0  

3 2 0  

4 2 0  

4 0 0  

4 0 0  

4 0 0  

4 2 0  

5 2 5  

5 0 2  

5 1 5  

5 0 3  

5 2 5  

5 9 0  

6 3 4  

6 0 8  

6 4 1  

6 0 0  

6 2 0  

6 8 0  

7 0 0  

7 0 0  

7 0 0  

7 0 0  

7 3 0  

8 1 0  

8 3 0  

8 3 0  

8 2 0  

8 4 1  

   

Loc Syc Birch  

  

Location 

1 Dungoon (DU) 

2 Northcliffe West (NW) 

3 Northcliffe Middle (NM) 

4 Northcliffe East (NE) 

5 Low Wood (LW) 

6 Dixon's Wood (DW) 

7 Royd's Cliffe (RC) 
8 Weather Royd's (WR) 

Second Example.   

Poisson Response Variable. Two way classification. 
 
Does relative abundance of sycamores and birches 

depend on woodland? 

 Data from Andrews and Herzberg. 

 A&H Table 55.txt 
 
1.  Construct the model 
 Variables. Count.  Number of trees in each cell 

  Sp Species (2) 

  Loc Location (8) 
 
 Evaluate dependencies to identify response variable. 

 Count depends on species and location. 

 Species depends on location, but not count. 

 Location does not depend on count or species.  

 Count is the response variable 
 
 Distribution �	~	�������(
) 
 Link � = 	
�  

   % = &' + &��4+�5 + &��)� + &�∙��+�5 ∙ )� 

 

Distribution:  Poisson distribution for counts where 

neither explanatory variable clearly depends on the 

other.  

Link:   Log link.  Multiplicative effects of 

explanatory factors 

Structural model:  Same structure as 2-way ANOVA 

and previous example 
 
2. Execute model 
> modell <- glm(formula = Count ~ Location * TreeSp, 

 family = poisson(link = log), 

 data = AHtable55) 
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3. Use parameter estimates to calculate residuals, and evaluate model. 

 

The diagnostic plots show heterogeneity and 

deviation from normal residuals. Sample size 

is large so estimates of likelihood ratios and 

p-values will be robust to violation of 

assumptions.  

 

 

 

 

 

 

 

 

 

 

 

 

4. What is the evidence?   
 

 Df Deviance seq df Resid. Dev Pr(Chi) 

NULL   79 283.3562  

Location 7 71.34234 72 212.0139 7.90E-13 

TreeSp 1 32.44743 71 179.5665 1.22E-08 

Location:TreeSp 7 46.78186 64 132.7846 6.16E-08 
 
 LR = e

132.7846 / 2
 >10

28
  kilogigabyte scale evidence 

 
4. Population. Units are plots, not trees. If plots were placed randomly in a 

defined area (the frame) then the population is all of the plots in the frame. If the 

plots were placed haphazardly, then the sample might still be taken as 

representative of the population in that area (frame). We may wish to infer, 

informally, to other locations (frames) with similar growing conditions. 
 
5.  Choose mode of inference. Is hypothesis testing appropriate? 

 Hypotheses testing appropriate, based on research questions, does relative 

abundance of sycamores and birch differ among woodlands?  We report the 

evidence as a likelihood ratio, followed by a Type I error.  
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6.  State HA / Ho  
 

HA :  $Loc*Sp ≠ 0 *   1Loc Spe
β

≠   Count depends on interactive effect 

Ho :   $Loc*Sp = 0 *  = 1Loc Spe
β

 Count does not depend on interactive effect. 
 
7.  ANODEV Table. As above 
 
8.  Assess p-values and estimates in light of evaluation of assumptions. 

 Assumptions were not met. Sample size was large, LR was very large, Type I 

error was very small.   Randomization will produce a Type I error rate that 

does not depend on assumptions of a distributional model.  We could also seek 

a better distributional model, such as negative binomial.  Randomization or a 

better distributional model will change the LR and the Type I error estimate.  

They will not change a conclusion at conventional levels of Type I error.  
 
9.  Statistical conclusion. 

A difference in abundance of sycamores and birches among woodlands is far 

more likely than no difference.  With a very low Type I error we can reject the  

hypothesis of difference due only to chance.   

 (∆G = 71.34, df = 7, p < 10
-12

) 
 
10.  Science conclusion.  Evaluate parameters of biological interest. 

 In this analysis only the interaction term was of interest. The test is indifferent 

to whether differences in woodlands result in differences in the relative 

abundance of the two tree species, whether differences in tree species result in 

different woodlands, or whether some other factor produces the observed 

relation. The analysis is thus similar to correlation, where the statistical 

analysis is mute on causal ordering.  
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Third Example.  Poisson Response Variable.  Two way classification. 
BACI design. 
 

The BACI design (before-after control-impact) design is widely used in 

environmental impact assessment.  Comparing a measured variable at a site 

impacted by some activity, such as release of effluent from a paper mill, is a 

natural approach.  But unfortunately this approach is less then rigorous. This is 

because difference at the impacted site might be due to some peculiaritie of the 

site.  This is called confounding. Eberhart (1976) suggested a paired approach, 

where before-after measurements at an impacted site are paired with before-

measurements at a control (unimpacted) site with similar characteristics.  Time 

(before versus after) and space (impacted, unimpacted) are both fixed factors.  The 

approach was popularized by Stewart– Oaten et al. (1986) and became known as 

the BACI model, although it is better to refer to it as a BACI paired (BACIP) 

model to avoid confusion with the unpaired design.  The design was extended to a 

Before-After Gradient design by Ellis and Schneider (1997). 
 

For a physical variable, such as parts per million of a contaminant, we would 

use a two-way ANOVA design.  For a count variable, such as number of 

organisms or number of species in sampled areas, we would use the same two-way 

design, but might well find that the residuals fan out in the cone shape 

characteristic of count data.  We would then use the two way design in a GzLM 

with an appropriate error structure.  Where variance in counts is approximately 

equal to the mean count, our first choice would be a Poisson error structure.  

Where the variance exceeds the mean, other error structures are appropriate.  These 

include over dispersed Poisson, and negative binomial. 
 
Bishop et al (1975)  Discrete Multivariate Analysis. Theory and Practice, MIT 

Press. 
 
Eberhardt, L.L. (1976). Quantitative ecology and impact assessment, Journal of 

Environmental Management 4: 27–70. 
 
Fisher, R.A. 1925.  Statistical Methods for Research Workers. Hafner.  
 
1997 Ellis, J.I., D.C. Schneider.  Evaluation of a gradient sampling design for 

environmental impact assessment.  Environmental Monitoring and Assessment 48: 

157-172. 
 
McCullagh, P. and J. Nelder 1983.  Generalized Linear Models.  CRC Press.  
 
Stewart-Oaten, A., Murdoch, W.W. & Parker, K.R. (1986). Environmental impact 

assessment: Pseudoreplication in time? Ecology 67:  929–940. 


