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ReCap. Part I (Chapters 1,2,3,4), Part II (Ch 5, 6, 7)
ReCap Part III (Ch 9, 10, 11), Part IV (Ch13, 14)
17 Poisson Response Variables
17.1 Poisson Regression
17.2 Single Categorical Explanatory Variable

 (Log-linear Model)
17.3 Single Categorical Explanatory Variable 

  (Sensitivity Analysis)
17.4 Two or More Categorical Explanatory Variables
17.5 Poisson  ANCOVA
17.6 Model Revision 

on chalk board

Ch17.xls

Today:   Power of a test.  Poisson response variable with single categorical
explanatory variable.  

Model Based Statistics in Biology.   
Part V.  The Generalized  Linear Model.
Chapter 17.3   Single Categorical Explanatory Variable (Sensitivity Analysis)

ReCap Part I (Chapters 1,2,3,4)  Quantitative reasoning
ReCap Part II (Chapters 5,6,7)  Hypothesis testing and estimation
ReCap (Ch 9, 10,11) The General Linear Model with a single explanatory variable.
ReCap (Ch 12,13,14) GLM with more than one explanatory variable
ReCap (Ch 15) GLM review
ReCap (Ch 16)The generalized linear model.
ReCap (Ch 17) Regression and one-way ANOVA with Poisson errors.

Wrap-up. 
G-statistics measures goodness of fit of data to model, for any design.
We looked at two way classification (two nominal scale explanatory variables)
The power (1-$)=(1!Type II error) is not worth calculation after analysis.
It is of interest to compute

the difference that could have been detected, given the error and n
or, the sample size require to detect a specified difference.



2Chapter 17.3

Type II statistical error.  Sensitivity and Power Analysis 
Standard practice in biology has been to report Type I error only, 
  with no consideration of Type II error.  One reason for this is
  that many applications are for nominal Ha for which Type II
  error (sensitivity) cannot be calculated easily, if at all.  
Generally one needs a specific Ha in order to calculate $ and
   state sensitivity.

The tolerance for type I error " is often set at 5% in biology.

Some rules of thumb about sensitivity.
Reducing the tolerance for type I error, aka ", will increase 

Type II error ß if the number of observations n is fixed. 
Toerance of type I error " often fixed at 5% not lower, for this reason.
An increase in number of measurements n decreases Type II error ß
This increase in number of measurements n increases the sensitivity of a

test, allowing small contrasts can be detected.

Some tests have lower Type II error $ than others:
For example, rescaling the quantity of interest to ranks typically reduces

the sensitivity and raises type II error.

If the null hypothesis accepted we do not undertake power analysis  (Hoenig)
Instead we undertake a sensitivity analysis.
 -Report detectable difference

-Calculate n required for specified difference
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Donax data can be analyzed as poisson
   (Prey selection, as here)
It could also be binomial 
  (case-control estimate of selection intensity)
  Because each animal could either be eaten
     or not, with probability depending on colour.

Poisson frequencies: comparison of 4 proportions    (Donax)

Analyses of poisson
frequencies in biology are
often made in a two-way
classification of the
response variable.  In a
two-way classification we
are typically interested in the interaction term, rather than main effects.  For example
in the case of colour patterns in tiger beetles in four seasons (Sokal and Rohlf 1995
Box 17.8) we are not particularly interested in whether a different number of beetles
were collected in each of the four seasons.  We have no idea of whether equal effort
was made to collect beetles in the four seasons, so it is of little interest to test whether
the four frequencies differ from a 1:1:1:1 ratio.   Similarly, we are not particularly
interested in whether the proportion of Bright red and Not bright red differ from a 1:1
ratio in this particular case.   Instead, we are interested in whether the proportions of
bright red and not bright red beetles change with season.  This is measured by an
interaction term.

Another example.  Do visual predators (birds) form search images and selectively
remove common colour morphs from polymorphic prey populations. 
Predated and unpredated clams are collected from the beach, and sorted into colour
categories.  
The first explanatory variable is shell colour (dark, ray, tinge, white).
The second explanatory variable is predation (yes or no).

This results in a 2 by 4 table.

The response variable is frequency of 488 Donax in these 8 cells.

We are interested in selective predation--in whether the relative frequency of shell
colours taken by birds differs from  that in the environment.

Draw picture
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If Two-way Poisson analysis covered
(beetles) then skip ahead at this point to 
G = 4.16    p = 0.26
accept Ho 

Live Predated
Dark 24 4  28
Rays 118 35 153
Tinge 90 38 128
White 139 40 179

371 117 488

28 371e$prd*clr = SSS @ SSS = 0.057 @ 0.76  =  0.044488 488

Live Predated
Dark 0.044 0.014
Rayed 0.238 0.075
Tinge 0.199 0.063
White 0.279 0.088

Poisson frequencies   (Donax)

The model is: 
relative frequency of shell colours depends on whether or not we are looking at a
predated or unpredated collection.

f = e$prd*clrN  +  residual 

e$prd*clr is the expected proportion of Donax in each of 4 colour categories and 2 states,
predated by birds or not predated.  This parameter will be estimated from the
marginal totals.  That is, we will use information about the number of Donax in the 4
categories, and about the total number predated or not predate, to estimate e$prd*clr for
each of the 8 observed frequencies that we have.

Poisson frequencies   (Donax continued)

There are 8 observed frequencies

The expected proportion of live donax, in the dark category, out of 488 Donax, is 

In similar fashion, we estimate the other 7 values of the parameter e$prd*clr 
The 8 values of eprd*clr are
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f = e$@N + residual 2lnL = 2 f ln(f/e$N)
24 = 0.044@488 + 2.71 5.76

118 = 0.238@488 + 1.68 3.39
90 = 0.199@488 ! 7.73 !14.06

139 = 0.279@488 + . 5.89
4 = 0.032@488 . .

35 = 0.026@488 . .
38 = 0.106@488 . .
40 = 0.084@488 . .

G  =  2 G f ln(f/e$N) 4.16

MTB > cdf 4.16;
SUBC> chisquare 3.

  4.16   0.7553

Two-way G-test   (continued)

We then use these to compute the fitted values e$N, which appear here in 8 data
equations.

While these computations can be done in any statistical package, they are also easily
completed in a spreadsheet. 

The G-statistic is 4.16

The p-value for this G-statistic is computed from a Chi-square distribution with three
degrees of freedom.  The degrees of freedom are computed exactly the same as was
the case with the interaction term in a two-way ANOVA.  The degrees of freedom for
the interaction term are calculated as the product of the degrees of freedom for the
main effects:  

dfprd*clr  =  dfprd * dfclr  =  (2!1)*(4!1)  =  3.

The Minitab command to compute the p-value is
 
More than 75.53% of the G-statistics obtained by
chance will be less than our observed G = 4.16.  And
24.47% will be greater.  So we accept the null
hypothesis that relative proportions of Donax colour
morphs taken by birds matches that for the available prey.  The symbol pprd|clr is read
"the proportion predated, given the colour."

Ho: pprd|dark  =  pprd|ray  =  pprd|tinge  =  pprd|white

We reject the alternative hypothesis

HA: proportions are not equal.
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Skip ahead to here, if 2-way
analysis (beetle example) covered
in previous lecture.

HoTrue HoFalse Therefore
Accept Ho ok II -->Reject Ha
Reject Ho I ok -->Accept Ha

Sensitivity Analysis

Because we have accepted the null
hypothesis, Type II error becomes of
interest.

Zar (1996) gives many examples of
computations of Type II error.  However, these example are usually for comparing
two groups.  Ie comparing 2 means, or 2 proportions.  Power (which is 1 - Type II
error) is difficult to calculate if we have multiple groups.

The Donax analysis is an example.  There are more than two groups, there are several
coloration categories.

In these cases, it is of interest to look at the difference that could have been detected.
It is also of interest to calculate the sample size needed to detect at specified
difference.  

In fact these questions are of more interest than calculating the Type II error rate.

The questions of detectable difference and adequate sample size arise when the null
hypotheses (it is just due to chance) has been accepted.
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Live Predated Expected Deviation Dev+ "Predated"

Dark 24 4 8 !4 !6 2
Rays 118 35 37 !2 !3 34
Tinge 90 38 28 +10 +10 43
White 139 40 44 !4 !6 38

371 117 117 0 0 117

Dev0 Dev1 Dev2 Dev3 Dev4 Dev5
!4 !5 !5 !6 !6 !6
!2 !2 !2 !2 !2 !3

+10 +11 +12 +13 +14 +15
!4 !4 !5 !5 !6 !6

To demonstrate this approach we will look at the the detectable difference for the
Donax analysis, using an iterative method.

The difference between expected (no selective predation) and observed (weak effects
if any) was 10 clams too many for Donax tinged with slight pink. 

 This number was successively increased until th G-statistic reached the criterion
value where p < ".

G-statistic rises as the deviation is increased.

When deviation reached +15,
G = 10.37 df = 3  p = 0.0157

It would have been possible to detect a deviation of 15 Donax "too many" in the
tinged category.

The observed deviation was 10 out of 117 Donax or 9%

The detectable deviation was 15 out of 117 Donax of 13%

We can be sure that selection was less than 13%, given the sample size we were able
to obtain.


