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ReCap. Part I (Chapters 1,2,3,4), Part II (Ch 5, 6, 7)
ReCap Part III (Ch 9, 10, 11), Part IV (Ch13, 14)
17 Poisson Response Variables
17.1 Poisson Regression
17.2 Single Categorical Explanatory Variable

 (Log-linear Model)
17.3 Single Categorical Explanatory Variable 

  (Sensitivity Analysis)
17.4 Two or More Categorical Explanatory Variables
17.5 Poisson  ANCOVA
17.6 Model Revision 

on chalk board

Ch17.xls

Today:   Poisson response variable with single categorical explanatory
variable.  

Model Based Statistics in Biology.   
Part V.  The Generalized  Linear Model.
Chapter 17.2   Single Categorical Explanatory Variable

ReCap Part I (Chapters 1,2,3,4)  Quantitative reasoning
ReCap Part II (Chapters 5,6,7)  Hypothesis testing and estimation
ReCap (Ch 9, 10,11) The General Linear Model with a single explanatory variable.
ReCap (Ch 12,13,14) GLM with more than one explanatory variable
ReCap (Ch 15) GLM review
ReCap (Ch 16) The generalized linear model.
ReCap (Ch 17) Poisson regression.  Variance of response variable increases as the
square of the fitted value.  We use the generalized linear model to take this into
account.

Wrap-up. 
The General Linear Model is a special case of the Generalized Linear Model. 
Consequently, we can carry out any GLM as a GzLM.

The example today demonstrated log-linear analysis for Poisson counts.  The
response variable has a variance that increases with the mean.  There is a single
explanatory variable, which is categorical.  The link between the response and
explanatory variable is logarithmic, hence the analysis considers percent change in
the response variable across levels of the categorical variable (factor).

Log link.  Analysis of multiplicative effects (changes in proportion) without having
to resort to log transform.

Often called G-tests or log-linear models.
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Introduction.  
Many of the analyses undertaken in biology are concerned with counts that are small,
with values near enough zero that deviations from any model parameter won't be
normal and homogeneous.  A plot of errors (residuals versus fits) will look like a
cone, widening out to the right at larger fitted values. 

The generalized linear model based on Poisson errors is covered under the heading of
G-tests in many texts, including Sokal and Rohlf (1995).  In this course we will treat
G-tests as still another special case of the generalized linear model, rather than
treating them as a separate topic.

Poisson response variables (counts) are analyzed in relation to categorical variables. 
These are called log-linear models.

In this course we will treat log linear models as a special case of the generalized
linear model.

Example.
We return to the classic example of Poisson data, the number of deaths by horse kick,
for each of 16 corps in the Prussian army, from 1875 to 1894.

The unit of analysis is now a single corp over 20 years.
The distribution of counts fits a Poisson distribution.

Does the risk of death due to horsekick depend on corps within an army?

Here we will analyze the data within the framework of the Generalized Linear
Model, to show that the G-test is a based on a model similar to a one-way ANOVA.

We begin with the computation of the goodness of fit of observed to expected.
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f fhat Dev = f*ln(f/fhat)
Guard 16 14 2.14
First 16 14 2.14
2nd 12 14 -1.8
3rd 12 14 -1.8

56 56 0.57
x2

G= 1.15

Next, analysis of the same data as a generalized linear model with a poisson response
variable.
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Data Hkick;
  Input Count Corps $ ;
  Cards;
    16 Guard
    16 First
    12 Second
    12 Third
;

SAS command file

1.  Construct the model
Verbal model.  Number of deaths depends on corps (Guard, 1st, 2nd, 3rd).
Graphical model. 
Formal model.  
  Response variable.   f = deaths.
  Explanatory variable.    Corps

We will treat the number of deaths as the result of probabilities  f = (p1 p2 ...)( N).
We are interested in whether the probability differs among corps.
Hence we will use a logarithmic scale for our model of frequency f.
Here is the model.

f e PoissonError= +
µ

log link, Poisson error

µ β β= + ⋅ref Corps Corps

2. Execute analysis.
Arrange data into model format.

Use model to execute analysis. ( ) ( )
f e e

Corps
error

ref Corps
=

⋅
+

β β

Proc Genmod;  Classes Corps;
  Model Count = Corps/
  Link=log dist=poisson type1 type3;

SAS command file

>   glm(formula = Count ~ Corps, 
family = poisson(link = log), 
data = Hkick)

R/S+ 

( )
β β

β
ref Guard

Guarde= = =27726 16.

( ) ( )
β

β β
First

Guard Firste e=
+

=
+

=0
27726 00

16
. .

( ) ( )
β

β β
Second

Guard Seconde e= −
+

=
−

=02877
27726 02877

12.
. .

( ) ( )
β

β β
Third

Guard Thirde e= −
+

=
−

=02877
27726 02877

12.
. .

In this example we have only 4 observations, and 4 parameters.  This is called a
saturated model.  There are no residuals.
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      Df Deviance   Resid. Df     Resid. Dev 
 NULL                     3       1.146776
Corps  3 1.146776         0       0.000000

 output from R/S+

                       LR Statistics For Type 1 Analysis

                                                   Chi-
          Source          Deviance        DF     Square    Pr > ChiSq

          Intercept        98.5389                                   
          Corps            97.3921         3       1.15        0.7658

SAS output file

4.  State population and whether sample is representative. 
Population is (?) all possible arrangements of these 16+16+12+12 = 56 deaths into 4
units.
Representative of (?) accidents in four military unit that are suspected of having
similar practices and accident rates over 2 decades.

5. Decide on mode of inference.  Is hypothesis testing appropriate?
Does death by horsekick depend on unit?  Yes/no decision  appropriately addressed
with hypothesis testing.
The units differ in observed deaths.  Are these differences greater than chance ?

6. State HA Ho etc

HA : frequency depends on both leaf type and soil type,βCorps ≠ 0 e
Corps

β
≠ 1

hence cross-product ratio differs from unity.

Ho : frequency does not depend on both leaf type and soilβCorps = 0 e
Corps

β
= 1

type, hence cross-product ratio equal to unity.

HA :  
( ) ( )

f e e
Corpsref Corps

=
⋅β β

Ho :
( )

f e
ref

=
β

Statistic: G       Distribution: chisquare       = 0.05α

7.  ANODEV Table 
ANOVA table is replaced  by Analysis of Deviance table.

The improvement in fit is G = 1.147∆

Here is the AnoDev table, from SAS.

The goodness of fit of the data to the null model is G = 98.5389 (df = 3)
The fit of the data to the alternative model     G = 97.3921 (df = 0)

The improvement is G = 1.1468 ( df = 3)∆ ∆

This measure  (G = 1.15) is exactly the same as that computed by the goodness of fit
test.
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7.  Calculate improvement in fit due to explanatory variables. 
Calculate p-value from Chisquare distribution.

Is this improvement G better than by chance ?∆
The p-value reported for G = 1.15 is p = 0.7658∆

 The p-value computed from the chisquare distribution is reliable for  G, but∆
not necessarily for G.

8. Recompute p-value if warranted.
Residual deviance = 0, so assumptions cannot be evaluated from residuals.

9. Declare decision.   G = 1.15, df = 3, p = 0.7658 hence accept Ho (reject HA)∆
The frequency of death was independent of corps.

10. Evaluate parameter estimates. 
There was no significant difference on counts among corps, so the  parameter of
interest is the mean number of deaths by horsekick over 2 decades in all 4 units.  pr =
(56 deaths / 20 years) / 4 units = 0.7 deaths/unit-year
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