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Model Based Statistics in Biology.    
Part V.  The Generalized Linear Model. 
Chapter 16.5 Notation and choice of probability model  

 
 
 
 
 
 
 
 
 
 
 
 

 on chalk board 

 
ReCap (Ch 16) We extend the model based approach we have 
learned to non-normal errors.   
GLM (normal errors) is a special case of GzLM 
Count data are analyzed with discrete probability models 
Continuous data bounded at zero are analyzed with a Gamma error 
Continuous data bounded at 0 - 1 are analyzed with a Betabinomial 
error 

 
Wrap-up. 
 

The GzLM consists of a structural model, an error model, and a function that 
links the two. 
 
The notation for the GzLM differs from the GLM.  It is shown in 3 parts: the 
probability model, the link function, and the structural model η. 
 
The distributional assumptions do not apply to the response variable.  They apply to 
the residuals from the model. 
 
Statistical tests of distributional assumptions reliably produce the wrong answer. 
 
Each probability model has a canonical link function. We can choose links other 
than the canonical. 
 
Normal errors can be used with count and zero bounded data if zeros and values 
close to zero are absent.   
 
  

Today: GzLM notation and choice of error structures and link functions. 

Part V.  The Generalized Linear Model 
16 Overview 
16.1 Normal error with identity link. 
16.2 Non-normal errors - Count data 
16.3 Goodness of fit tests.  χ2 and G-tests. 
16.4  Non-normal errors – Continuous data. 
 Zero-bounded data 
 0 – 1 bounded data 
16.5 Notation and choice of probability model 
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Notation 
The generalized linear model is specified in three parts: a probability model, a 
structural model, and a function that links the two.  Here is a list of the most 
commonly used models, in 3 part notation. 

 
GLM – Normal error, identity link. 
  Mass is used as an example of a variable that is often distributed normally. 

Distribution Mass ~ Normal(μ, σ) 
 μ refers to the distribution of residuals around the fitted model 
 μ = 0 for unbiased estimates. 
 σ refers to the standard deviation of the population.  
 ,ො is the estimate of the standard deviationߪ 
 s is a common symbol for the estimate of σ 
 
Link Mass = μ This is the identity link 
 
Structural 
Model ߟ ൌ ߚ∑ ܺ 
 ܺ = Explanatory variable, i = 0 to n 
   consists of one or more contrasts (categorical)ߚ 

  or slopes (ratio scale regression variable). 
 
Normal error, log link for exponential rates 

[C] = concentration of substance C.  
[C] is used as an example of a variable that often remains distributed normally  

when changing at an exponential rate. 
Distribution [C] ~ Normal(μ, σ) 
 [C] = concentration of substance C. 
 
Link [C] = eμ This is the log link 
 The log link is used in preference to ln(C) when estimating 
 an exponential rate, such as a clearance rate.  
 
Structural Model ߟ ൌ ߚ∑ ܺ 
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Binomial response variable 
Live is used as an example of a variable that is scored in  
 two categories, Live or Dead in N organisms. 
Distribution Live ~ Binomial(N, π) 
 p = Live/N 1-p = Dead/N 
 Odds = p / (1-p) = Live/Dead 
 
Link Odds = eη This is the logit link  
 The logit link is used to analyze multiplicative effects  
 expressed as odds ratios. 
 
Structural Model ߟ ൌ ߚ∑ ܺ 

 
Poisson response variable 

Count is used as an example of a variable that is scored as a count in a 
 in a defined unit such as a quadrat. 
Distribution Count ~ Poisson(λ) 
 λ = Mean(Count) = ∑ݏݐ݊ݑܥ  ݏݐܷ݅݊∑/
 Variance(Count) = λ 
 Variance(Count) / Mean(Count) =1 
 Count data rarely meet this restriction. 
 
Link Count = eη This is the log link  
 The log link is used to analyze multiplicative effects  
 expressed as proportions. 
 
Structural Model ߟ ൌ ߚ∑ ܺ  

Quasipoisson response variable 
Count is used as an example of a variable that is scored as a count in a 
 in a defined unit such as a quadrat. 
Distribution Count ~ Poisson(λ,CD) 
 λ = Mean(Count) = ∑ݏݐ݊ݑܥ  ݏݐܷ݅݊∑/
 CD = Variance(Count) / Mean(Count) 
 CD = Coefficient of Dispersion. 
 CD is estimated from the data. 
 
Link Count = eη This is the log link  
 The log link is used to analyze multiplicative effects  
 expressed as proportions. 
 
Structural Model ߟ ൌ ߚ∑ ܺ 
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Negative binomial response variable 
Infected is used as an example of a variable that is scored as a count  
 resulting from a binomial process that varies according to the failure rate (1-p)  
Distribution Infected ~ NB(r, π) 
 π = binomial proportion 
 r = shape parameter 
 variance(Infected) = r · π /(1-π)2   
 
Link Infected = eη This is the log link  
 
Structural Model ߟ ൌ ߚ∑ ܺ 

 
Gamma response variable 

TreeAge is used as an example of a continuous variable bounded at zero with a  
 right skewed distribution, such as a very low occurrence of very old trees. 
Distribution TreeAge ~ Gamma(k, θ) 
 k = shape parameter 
 θ = scale parameter 
 mean(TreeAge) = k θ 
 variance(TreeAge) = k θ2  
 
Link TreeAge =e1/η  This is the inverse link  
 
Structural Model ߟ ൌ ߚ∑ ܺ 

 
Beta binomial response variable 

%DOC is used as an example of a continuous variable that is scaled from 0 to 1 
against a fixed maximum.  

DOC = Dissolved Organic Carbon.   
 DOC is scaled to the total carbon in a sample.   
Distribution %DOC ~ BetaBinom(μ, φ) 
 μ = mean proportion 
 φ = dispersion 
 
Link %DOC = eη This is the log link  
 
Structural Model ߟ ൌ ߚ∑ ܺ 
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Commentary. 
 
Binomial Count Data.  Intrinsic Hypotheses.  
We usually do not have an extrinsic hypothesis, derived from a model external to the 
data at hand. In the absence of an extrinsic hypothesis we use an intrinsic 
hypothesis. Examples of intrinsic hypotheses are that the odds are the same across 
groups or that the odds do not change in relation to a regression variable. 
In other words, the extrinsic hypothesis is that the odds ratio is OR = 1. 

 
Poisson Count Data 
For Poisson counts we use the Poisson  error structure. We use the log link because 
we are usually interested in proportional changes. 
For example, if we were analyzing counts of two species of fruitfly in relation to 
altitude, the model has the same structural model as  
as in the analysis of heterozygosity in relation to altitude. However, the error 
structure is appropriate to the assumption that the response variable is a Poisson 
count.  
We use the log link because we are usually interested in proportional changes:  does 
the proportion change in altitude? 

 
The generalized linear model allows us to use the same suite of structural models as 
the general linear model. Here, for example is the model for proportional change in 
counts of two species of fruitfly in two habitats. 
As we will see in a later chapter, the interaction term test is equivalent to a two-way 
contingency test. It tests whether the count (as a proportion) depends on species. 

 
If we are interested in absolute changes in counts, not proportions, we can use the 
identity link with Poisson errors 

 
Negative Binomial Count Data. 
Counts of organisms are often overdispersed: the variance is greater than the mean, 
and hence the Poisson error structure (variance = mean) is inappropriate. When this 
occurs the appropriate error structure is the negative binomial. 
  
In general we use the log link, thus comparing counts as proportions. However, we 
can use the identity link if we are interested in absolute differences in counts. 
 
Lognormal and Gamma  Errors. 
Count data is not the only source of heterogeneous errors. Often the variance 
increases with the mean, leading to heterogeneous errors, for ratio scale data that are 
not counts. For example, we may be interested in dispersal distances of fruitflies. 
This response variable may prove to lognormally distributed, with 'typical' value but 
with an occasional very large distance. In this circumstance the errors will often not 
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be normally distributed. The gamma error structure will often be appropriate, as it 
takes into account the increase in variance with increase in mean or expected values. 
 
If we are interested in absolute rather than relative comparison across habitat and 
species we can use the identity link. The inverse link is often recommended on 
mathematical grounds (McCullagh and Nelder 1989). 


