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Model Based Statistics in Biology.    
Part V.  The Generalized  Linear Model. 
Chapter 16.3   Goodness of Fit for Count Data 
 
 
 

 
 
 
 
 
 
ReCap (Ch 16) We extend the model based approach we have learned to non-
normal errors.  This is called the generalized linear model.  GLM (normal errors) is 
a special case of GzLM 

Wrap-up.  
Count data are traditionally analyzed with goodness of fit tests.. 
 
The chisquare statistic measures goodness of fit.  The deviance (non-Pearsonian 
chisquare or G-statistic) is similar in value, with better statistical properties. 
 
The traditional chisquare and the deviance statistic are used to test extrinsic 
hypotheses such as fit to a Mendelian ratio. 
 

Part V.  The Generalized Linear Model 
16 Overview 
16.1 Normal error with identity link. 
16.2 Non-normal errors - Count data 
16.3 Goodness of fit tests.  χ2 and G-tests. 
16.4  Non-normal errors – Continuous data. 
 Zero-bounded data 
 0 – 1 bounded data 
16.5 Notation and choice of probability model

Today:   Goodness of fit tests 

Data:  Ch16.xls data. 
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Goodness of fit - The Chisquare statistic. 
In order to apply the generalized linear model we will need to learn a new 
approach to model evaluation, the analysis of deviance (Anodev).  Anodev is a 
logical extension of  the Chisquare goodness of fit statistic used in a Chisquare test. 
We begin with this statistic, then move to its modern equivalent, the G-statistic. 
From there we develop the concept of improvement in fit and the Anodev table, 
which we will use instead of the ANOVA table.   
 
Example:  Gregor Mendel crossed a strain of purple flowered pea plants with a 
strain of white flowered plants, to obtain F1 hybrids.  He then crossed the F1 
hybrids with themselves, obtaining 929 plants that he scored as having either white 
W or purple P flowers.  
Does the observed proportion differ from the 3:1 proportion expected in the F2 
offspring of the F1 hybrids? 
 
To test data against genetic theory, we 
calculate the Chisquare statistic (X2) defined 
as the squared difference between the 
observed and expected value, divided by the 
expected value, then summed across classes.  
The X2 statistic increases as the difference 
between the observed and expected value 
decreases toward zero (perfect fit).   
 

 
Following convention, we write the Chisquare statistic as X2 and so distinguish the 
statistic from the Chisquare distribution denoted by a greek letter as 2.  We use the 
2 distribution to evaluate whether a poor fit (large X2) is too large to be attributed 
to chance at a pre-set criterion, such as  = 5%. The 2 distribution, like the t- and 
F-distribution, depends on the degrees of freedom.  This is only to be expected, as 
the F-distribution is the ratio of two 2 distributions, and the t-distribution is a 
special case of the F-distribution, with df = 1 in the denominator 
(MSnumerator/dfnumerator).   
  

  Observed Expected Difference2/Expected 
  Purple 705 929*(3/4) = 696.75 (-8.25)2 / 696.75 = 0.097686 
  White 224 929*(1/4) = 232.25 (+8.25)2 / 232.25 = 0.29306 
      Total 929      0.3907 = X2   

The reason for the 3:1 ratio is one 
of the major ideas in biology.  If 
you have forgotten the concept, or 
never took a biology course, the 
idea is easily looked up and easily 
grasped because you, like Mendel’s 
pea plants, inherit genes from two 
parents.   
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Goodness of fit - The Chisquare statistic. 
The X2 statistic, divided by its degrees of freedom, is a measure of fit similar to the 
mean squared error MSE used in an ANOVA table. 
 
 MSE  =  SSerr/dferr  =  MSerr   
 MSE  =  Var(res)  =  Var(Obs - Exp).  
 
We use the 2 distribution with the appropriate degrees of freedom to compute the 
Type I error (p-value) on concluding that the observed ratio differs from genetic 
theory. 
 
Could we obtain a value of X2  = 0.3907 by chance alone, with two categories? 
The probability of this large a value of X2 by chance alone is  
 p = 1 - 0.4681 = 0.5319 

 
  Excel 
 
 
 
 
 

 
We conclude that the 
deviation of the data 
from the 3:1 genetic 
model is easily due to 
change (not significant) 
at the conventional criterion of  = 5%.   
The difference between the observed ratio of mutant to wild type offspring 
(705:224) and the theoretically expected value (3 : 1) is due to chance. 

MTB > cdf 0.3907; 
SUBC> chisquare 1. 
      0.3907   0.4681 

Query:  Why 1 df ? 
Answer: We have n = 1 observations. We have an 
extrinsic hypothesis so we do not lose a df by 
estimating a parameter from the data.   
df = 1 – 0 = 1. 

R/S+ > pchisq(0.3907,1) 
 [1] 0.4680683 
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Goodness of Fit.  The G-statistic 
The modern measure of goodness of fit is the likelihood ratio Chisquare, written 
either as G or as G2. The G-statistic is based on the solid theoretical underpinning 
of likelihood (Fisher 1935) , which considers the likelihood of the model given of 
the data. 
 Unlike the Pearsonian Chisquare statistic that we just computed, the G-
statistic can be used in complex analyses involving several explanatory variables.  
The G-statistic allows us to compute the improvement in fit of one model relative 
to another, in complex as well as simple models.  It allows us to compare the 
likelihoods of any two models, using any probability model (Normal, Binomial, 
etc). 
 
With likelihood we ask “how likely is a parameter, given the data?”  For Mendel’s 
pea data we ask “ how likely is a 3:1 ratio of purple to white peas, given an 
observed ratio of 705/224 = 3.15 : 1 ? 

The likelihood  ratio given 705 purple peas is   L2
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The likelihood  ratio given 224 white peas is   L2
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In symbolic form the likelihood ratio  is    LR
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For all the observed values the likelihood is: 
   LR LR LRtotal  1 2  
When the fit is perfect ( f f/   1) the likelihood ratio becomes  LR= 1. 
 
Taking the logarithm of both sides will give us a sum to work with, rather than a 
product. When the fit is perfect ( ln( /  )f f  0) the log likelihood ratio is lnLR = 0. 
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The G-statistic is twice the log-likelihood ratio:  G =  2lnLR
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Goodness of Fit from the likelihood ratio.   Extrinsic Hypothesis 
Here is the calculation of the G-statistic for the pea flower data. 
The observed frequency fi has two values, 705 and 224.  The expected frequency 
from a 3:1 theory is f p Ni i  .   It has two values, ¾ N and ¼ N. 

 
LR = 1.2    
The fit of data to theory is almost perfect. 
The Mendelian ratio of 3:1 is just as likely as the observed ratio:  705/224 = 3.147 
 
The likelihood based measure of goodness of fit is G =  -2 lnLR, twice the sum of 
the log likelihood ratios.  The smaller the deviation of the data from the model, the 
smaller the G statistic.  In this example the deviation of the data from the model 
value is G = 0.394.  Often, but not always, the G-statistic will be similar in value to 
the Chisquare statistic (X2  = 0.391 for the Mendel pea data). 
 
G uses the likelihood ratio.  In contrast, the Pearsonian Chisquare statistic uses the 
squared deviations of the differences between observed and expected values.  The 
G-statistic is reported because it is distributed as chisquare, from which a 
probability can be calculated.  The likelihood ratio is rarely reported, but easily 
back calculated from the G-statistic: LR = exp(G/2) = 1.2    
LR < 20 
 
The likelihood ratio is a measure of the evidence.   
A p-value calculated from the G-statistic is used to carry out a likelihood ratio test.  
 
Traditional Goodness of Fit Tests.    Extrinsic Hypothesis  
Could the G statistic we obtained be too large to be due to chance ?    
We use the generic recipe for hypothesis testing. 
1.  Population = ?  
     All possible outcomes, if the same experiment was carried out repeatedly. 
2.  ST = ?   The statistic is G. 
  

  Observed  Expected       

  Purple 705 929*(3/4) = 696.75 705*ln(705/696.75) =  +8.29865 

   White 224 929*(1/4) = 232.25 224*ln(224/232.25) =  - 8.1017 

      Total 929      +0.1969 

 LR = e0.1969 = 1.2    G  = +0.394 
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3.  Ho:  ݂ ൌ ݌ ∙ ܰ LR = 1  G = 0   G no larger than by chance. 
 The likelihood ratio LR exceeds one by no more than chance. 

The hypothesis of interest for a goodness of fit test is the “null”  that the 
observed ratio and the Mendelian ratio differ by no more than just chance.  
The fit is judged good if the null or reference hypothesis cannot be rejected.    

4.  HA:  ݂ ് ݌ ∙ ܰ LR > 1 G > 0 G larger than by chance 
The alternative hypothesis is that the difference between observed  and 
expected is more than chance.   

5.  In the absence of risks or economic costs of Type I error, or ethical 
requirements to hold Type I error to 5%, we use Fisher sorting.  

6.  State distribution. 
We need a distribution of all possible outcomes, in order to calculate the 

probability of the observed value of G.We can use a probability model or we can 
use randomization to obtain a p-value.   

To carry out a randomization test we assign each of the 929 plants randomly 
to a phenotype (white or purple) according to a 3:1 ratio.  We could do this by 
flipping 2 coins:  if the outcome is HeadsHeads, then offspring are assigned to 
the white type.  If the outcome is anything else (HT TH or TT) offspring are 
assigned to the purple type.  Obviously we will not obtain exactly the same 
assignment to the two phenotypes each time we assign the 929 offspring by 
chance.  But if we make the assignment repeatedly (and calculate the G each 
time) then we will obtain a distribution of our G-statistic when the data do fit the 
model of a 3:1 ratio. 

 Equivalently we use the 2 distribution to calculate a p-value.  This is less 
work.  We will use this because we know from statistical theory that if we have 
a binomial (yes/no, purple/white) outcome with probability of p = 0.25 
successes in 929 independent trials, and we compute G, that the statistic will be 
distributed as 2.   

7.  Calculate statistic.  G = 0.394 (above). 
8.  Calculate the p-value.  

We have one degree of freedom because we have estimated 1 parameter, the 
observed ratio of purple to white flowers. The p-value from the 2 distribution is  

p = 1 - 0.4697 = 0.53 
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8.  Calculate the p-value.  
 What about assumptions for computing p-values from chisquare distributions? 

We have 929 residuals but these will consist of 224 having one value, and 705 
having another value.  We have too little information to undertake any diagnosis 
of homogeneity. 

We assume inheritance of flower color in one plant is independent of that of 
another.  If we had the original data, in the order in which it was recorded, we 
could check the assumption of 929 independent measurements.  This could be 
checked by looking for runs of white or purple flowers in the data, based on 
neighboring plants.  A quick check, if neighbors are known, is to plot scores 
(0/1, y/n,  present/absent etc) against neighbors. 

If we found some serious problem we should do the experiment again, as 
randomization won’t solve the problem of non-independent measurements.  

 
9.  Report statistical conclusion. 

Using the 2 distribution (df = 1), we calculate that 99.91% of the G-statistics 
will be less than 10.97, if the data do indeed conform to the expected 3:1 ratio.  
We cannot reject the “null” hypothesis of no difference between observation  
and theory.  

 
0.53 = p >  =  5% 

 
10.  Report science conclusion. 

G = 0.394  df = 1   p  =  0.53    
The data are consistent with the 3:1  Mendelian ratio for a dihybrid cross.   

 
For much of the 20th century analysis of counts were made with G-tests such as this 
one.  The error distribution, which goes unmentioned, is the Poisson.  A binomial 
error is clearly appropriate—we have a known number of flowers scored as purple 
or white.  In 1972 McCullagh and Nelder used data from a traditional G-test to 
show analysis with a binomial error structure. 


