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Model Based Statistics in Biology.    
Part V.  The Generalized Linear Model. 
Chapter 16.2  Non-normal errors - Count Data 
 
 
 
 
 
 
 
 
 
 
 
ReCap (Ch 16) We extend the model based approach we have learned to non-normal 
errors.  This is called the generalized linear model.  GLM (normal errors) is a special case 
of GzLM 

 
Wrap-up.    
Binomial counts arise when each statistical unit is scored as yes/no, present/absent, etc.   
Poisson counts arise from an unknown number of trials within a statistical unit. Poisson 
counts result from rare and random events.  The variance will be approximately equal to 
the mean count per unit.  
Overdispersed Poisson counts are common.  The variance exceeds the mean count per 
unit.  Overdispersion has many sources.  These include zero-inflated counts and 
heterogeneous Poisson counts, resulting in a negative binomial distribution. 

Part V.  The Generalized Linear Model 
16 Overview 
16.1 Normal error with identity link. 
16.2 Non-normal errors - Count data 
16.3 Goodness of fit tests.  χ2 and G-tests. 
16.4  Non-normal errors – Continuous data. 
 Zero-bounded data 
 0 – 1 bounded data 
16.5 Notation and choice of probability model 
 

Today:   Analysis of count data. 
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Binomial, Poisson, and overdispersed counts. 
Many of the analyses undertaken in the biological, health, and social sciences are 
concerned with counts. 
 
Biomial counts.  Here are two examples/ 
1. The frequency of two color morphs from a hybrid cross. 
 Mendel scored 929 pea plants, 224 with white flowers, 705 purple. 
2. Dose - response curves.  D.W. Gaylor (1987) reported the number of animals 

developing tumors in relation to the dose of a suspected carcinogen. 
Out of N = 136 animals, 55 developed tumors. (Gaylor.dat) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
These are binomial variables because a known number of  statistical units are scored as 
yes/no (present/absent).  The data consist of trials (number of units) and number of units 
scored ‘positive.’ 

18   0   0 
22   2   1 
22   1   5 
21   4  15 
25  20  50 
28  28 100 
 
N Ntmr  Dose 
 
N = number of experimental animals fed  
  aflatoxin B_1, a suspected carcinogen. 
 
Ntmr = number developing liver tumors 
 
Dose = amount fed to animals (ppb) 
 
Data from D.W. Gaylor (1987)  
Linear_nonparametric upper limits for low dose 
extrapolation 

 Statistical Unit Trials    Scored ‘Yes’ or ‘positive’       
 Flower Number of flowers Purple flowers 
 Animal Number of animals Animals with tumors 
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Poisson Counts  Here are two examples. 
 
1. Number of Ceriodaphnia dubia in first brood, in relation to aquatic pollutant dose. 
 Var/mean = 0.42   
Bailer, A.J., and Oris, J.T. 1993. Modeling reproductive toxicity in Ceriodaphnia tests. 
Environmental Toxicology and Chemistry 12: 787-791 
 
2. Deaths by horsekick in each corps of the Prussian army, 1874_1894 (Kick.dat). 
This is a classic data set, from The Law of Small Numbers (Bortkiewicz (1898).  
Bortkiewicz showed that events with low frequency in a large population follow a 
Poisson distribution even when the probabilities of the events varied, 
 
 
 
 
 
These are Poisson counts because. The number of trials is unknown.  Counts range from 
zero upward in each unit. 
 
The variance depends on the mean. 
One of the characteristics of count data is that variance depends on the mean.  For 
binomial counts the variance is greatest is at Nsuccess/Ntotal = 0.5, such as in flipping a 
fair coin.  The variance decreases away for 0.5, become small near the 0 and 1 
boundaries.  For Poisson counts, the var/mean = 1.  In words, the variance increases in 
direct proportion to the mean.    
 

 
 
For count data, we expect the variance to change with the mean and as a result we expect 
residual versus fit plots that show spindles (such as with binomial counts) or shows cones 
and fans (Poisson counts).  We have good reason to doubt that an analysis of the residuals 
will pass the homogeneous  error assumption that comes with a normal error. 
  

 Statistical Unit       Count                      
 Brood1 Number of offspring  
 Corps Number of deaths, each year  
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Normal distribution for count data.  
While we expect count data to violate the assumption of homogenous errors, we cannot 
rely on it.  If counts near zero are absent, and small counts are rare in Poisson counts, 
then a normal error can be a good approximation. To find out we can use the residual vs 
fit plot to establish the key assumption – homogeneous errors.   
 
Overdispersed Poisson counts. 
Poisson errors have very restrictive assumption: var/mean = 1.  It turns out that most 
count data deviates strongly from this assumption.  Here are two examples where 
variance exceeds the mean. 
1. Number of native species (count = 2 to 95) on 31 Galapagos islands, in relation to 
island size, elevation, distance from nearest island, and size of nearest island.  
Table 49 in Andrews and Herzberg (1985) 
 Var/mean = 154 
2. Count of number of offspring in 3rd brood of Ceriodaphnia dubia  
in relation to dose of a pollutant (Bailer and Oris 1993) 
 Var/mean = 3.6  (zeros present) 
 Var/mean = 0.9  (zeros absent) 
 
 
 
 
 
Overdispersed Poisson counts require a distributional model where the variance to mean 
ratio can exceed unity.  This variance to mean ratio can be estimated from the data  and 
used in a quasiPoisson distribution.  It can also be estimated from the one of the two 
parameters of the negative binomial distribution. The quasiPoisson and negative binomial 
distribution both allow variances that depend on the mean with variance to mean ratios 
deviating from 1. 
 
Zero inflated Poisson counts. 
In the example above, the offspring count in the 3rd brood is Poisson (var/mean = 0.9) 
where offspring are present.  It is non-Poisson when zeros are included (var/mean = 3.6).  
The data are zero-inflated Poisson counts.  This example points at a third solution to 
overdispersed counts.  Units with counts from 0 upward are first scored as present or 
absent.  A binomial distribution is used.  A Poisson distribution is then used for units with 
a count of 1 or more.  This implies two processes--one that generates presence/absence 
counts, another that generates a Poisson count in non-zero broods. 
 
Here are some more examples of overdispersed poisson counts, taken from Andrews and 
Herzberg (1985) 
 

 Statistical Unit    Count                      
 Island Number of seeds  
 Brood3 Number of offspring  
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Table 54. Frequency of social grooming in otters 
(count = 0 to 12 in fixed time units) classified by group, season, 
groomer (F1,M2,M3,M4), recipient (F1,M2,M3,M4). 
 Var/mean= 4.11 
Table 55. Counts of trees (ranging from 0 to 12) of 6 species in 8 woodlands. 
 Sycamore.     Var/mean = 3.46 
 Birch.     Var/mean= 3.85 
 
Contingency Tables.  
 
Count data are often analyzed as contingency tests.  Here is the first example in Fisher’s 
1925 textbook.   
 
Typhoid data from Greenwood and Yule 1915. 
Proc.Roy. Soc. Medecine 8: 113. 
 Attacked Not attacked % Attacked 

Inoculated 56 6759 0.829% 
Not inoculated 272 11668 2.331% 
 328 18155  

 
Fisher presented contingency tables as a special case of goodness of fit tests, which were 
developed by Pearson (1900).  Fisher used Pearson’s Chisquare statistic to measure 
goodness of fit. Fisher calculated the statistic as 56.23, a value “clearly opposed to the 
hypothesis of independence.”  In other words, opposed to the null hypothesis of equal 
proportions.   In a landmark publication Bartlett (1935) established the analysis of 
contingency tables on the sound basis of likelihood estimates. Bishop et al (1975) extend 
this approach from 2 way classifications to multiway tables, having 3, 4 or even more 
classification variables, using Poisson errors.  In 1983 McCullagh and Nelder showed 
that many contingency tables can be analyzed with a binomial error. However, 
subsequent texts have continued the tradition of presenting contingency tests that are 
mixtures of Poisson and Binomial error structures, as in Bishop et al.  
 
Here are two examples from Bishop et al (1975, p41).  
For each we ask which is it: Poisson? Or Binomial? 
 

Table 2.4-2 Infant Survival Related to Amount of Prenatal 
Care Received in Two Clinics. 
 
In this example we could consider Died and Survived in 
each row as random draws from a population.   

It is, however, a stretch to take the sum in each row as the cohort from which the draws 
were taken.  We have at best a vague concept N, the number of units for a binomial draw. 
 
  

Place Care Infant survival 
Died Survived 

Clinic A Less 3 176 
More 4 293 

Clinic B Less 17 197 
More 2 23 
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Contingency Tables.   Second example  
 
Table 3.7-10   Thromboembolism by smoking and contraceptive use   

Smoker Nonsmoker 
Contraceptive user Contraceptive user 

Yes No Yes No 
Thromboembolism 14 7 12 25 
Control 2 22 8 84 

 
As presented, there are 3 classification variables. 
Count Response  8 counts 
Smoker Explanatory 
Contraceptive Explanatory 
Thromboembolism Explanatory 
 
In this case we have clear understanding of cohort number N.   

Smoker Nonsmoker 
Contraceptive user Contraceptive user 

Yes N Yes N 
Thromboembolism 14 21 12 37 
Control 2 24 8 92 

 
The table reduces to 2 classification variables. 
Count Response  4 counts of Yes in 4 cohorts 
Smoker Explanatory 
Contraceptive Explanatory 
 

Counts of units scoring positive as a proportion of the number of units (binomial) are 
bounded at zero and at one.  The variance contracts near zero and one.  The distributional 
model is the binomial distribution. 
 
Counts within statistical units (Poisson) range from 0 upward.  The range and variance 
expand as the mean rises. The Poisson or Negative Binomial distributions are used as a 
statistical model. 
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