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Today:   ANCOVA -  Model revision, based on analysis of residuals.

Model Based Statistics in Biology.   
Part IV.  The General Linear Model. Multiple Explanatory Variables.
Chapter 14.3   ANCOVA - Model Revision

ReCap Part I (Chapters 1,2,3,4)  Quantitative reasoning is based on models,
including statistical analysis based on models.
ReCap Part II (Chapters 5,6,7)
Hypothesis testing uses the logic of the null hypothesis to declare a decision.
Estimation is concerned with the specific value of an unknown population parameter.
ReCap (Ch 9, 10,11) The General Linear Model with a single explanatory variable.
ReCap (Ch 12) GLM with more than one regression variable (multiple regression)
ReCap (Ch 13) GLM with more than one categorical variable (ANOVA).
ReCap (Ch 14) ANCOVA with GLM 

Comparing regression lines.
Statistical control

Wrap-up. 
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Introduction.  
Revision of model is a logical outgrowth of the model based approach to hypothesis
testing with the GLM.  If our model includes a regression variable (ANCOVA,
multiple and simple linear regression) then we need to make sure that fitting a straight
line represents the relation of the response to the explanatory (regression) variable.    If
there are bowls or arches, then our straight line model does not represent the data. 
The model is inappropriate and hence out conclusions suspect.

Model revision is an example of quantitative reasoning about biological data, rather
than learning “the right statistical method.”

Data from:  Yamauchi, A.  H. Kimizuka.  1971.  Study of bio-ionic potentials. Journal
of Theoretical Biology 30: 285-295.

Purpose of study was to estimate the rate of increase in  membrane potential with
increase in the logarithm of activity ratio.   It is interest to investigate whether the rate
of increase depends on ionic composition.  Sokal and Rohlf (1995) use the data to
illustrate ANCOVA for statistical control: comparison among cation systems,
controlled for a regression variable (Box 14.9 on page 504)

What is the rate of change in membrane potential with change in
cation concentration, as measured by the  activity ratio ?
Does this rate depend on the cation system?

1. Construct model
Verbal model. 
Membrane potential increases with activity ratio.  The rate of
increase may depend on the cation system

Graphical model.

Response variable is membrane potential V = millivolts

Explanatory variable.  Group = cation system
The four cation systems were strontium-sodium, calcium-potassium,

calcium-sodium, and calcium-lithium, for which the symbols are
Gr  =  Sr-Na  Ca-K  Ca-Na  Ca-Li

The other explanatory variable, which needs to be taken into account, is:
logarithm of the activity ratio logAr (no units).
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Sketch a graph above each term

 MTB > glm 'V' =          'A'   'Gr'    'A'*'Gr';
 SUBC> covariate  'A';
 SUBC> fits c4; 
 SUBC> residuals c5.

!6.57 mV
on board!2.18 mV

 $$Gr = beneath $$Gr+0.55 mV
in model

+5.66 mV

1. Construct model
Formal model

Write model Vmem  =  $o  +   $logAr@ logAr  +  $Gr@ Gr  +  $logAr x Gr@ logAr@ Gr  +  ,

The parameter $logAr stands for the rate of change in membrane potential with
respect to the rate of change in the logarithm of activity ratio.

The parameter $Gr stands for a set of means: one for each cation group.

The parameter $logAr x Gr  stands for degree to which slope in each group varies
from the overall slope   $logAr 

2.  Execute analysis.
Place data in model format: 

Column labelled V, with response variable membrane potential
 Column labelled Gr, with nominal scale explanatory variable, one category for

each cation group.
Column labelled A, with ratio scale explanatory variable, log activity ratio.

Code the model statement in statistical package according to the GLM
V =  $o  +  $A@ A  +  $Gr@ Gr  +  $A@Gr@ A@ Gr  +  ,

Fits and residuals from: 
model statement output of fitted values and residuals (as above)

or parameters reported by GLM routine
or direct calculation of parameters

Here are the parameter estimates.

The overall mean is  &V  =  349 / 21  =  16.62 mV =   $$o

The mean for each cation system is expressed as a deviation from $$o

The slope parameter for all cation systems together is $$A   =  20.999 mV
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!0.333 mV 
on board

+0.070 mV
 $$A x Gr = beneath $$A * Gr+0.395 mV

in model
+0.132 mV

 MTB > plot 'res' 'fits'
          -      *
          -                                                 *
       2.0+           *                                         *
          -
  res     -          *                                *
          -
          -               *              *               *   *
       0.0+                                  *     *
          -
          -                       *               *
          -                    *            *         *
          -                *    *             *
      -2.0+
          -
          -
          -                               *
          -
            ------+---------+---------+---------+---------+---------+fits
                -12         0        12        24        36        48

 Analysis of Variance for mempt   
   Source         DF     Seq SS     Adj SS     Adj MS       F      P
   A               1    4197.01    3192.09    3192.09  876.71  0.000
   Gr              3    1768.58    1413.83     471.28  129.44  0.000
   Gr*A            3       0.80       0.80       0.27    0.07  0.973
   Error          13      47.33      47.33       3.64
   Total          20    6013.72 

2.  Execute analysis.
The deviations from this slope are 

The GLM routine computes fitted and residual values.

3.  Evaluate the model    Plot residuals versus fitted values.

a.  Straight line assumption 
Is a straight line model (for effects of activity ratio) appropriate ?
No.  A very clear bowl from left to right
Back to step 1.

It is of interest to note that if we were to continue using this model rather than revising
it, we would conclude that the slopes are homogeneous, i.e. relation of V to logAr
does not depend on group.  

This conclusion would, however,  be based on a  model that deviates systematically
from the data.
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 MTB > glm 'V' =   'A'   'Gr'     'Lvl'     'A'*'Lvl'   'A'*'Gr';
 SUBC> covariate  'A'   'A2';
 SUBC> fits c4; 
 SUBC> residuals c5.

Model Selection
The following models were then tried because logarithmic scaling of variables will
often straighten out simple bowl or arch patterns.

V  = log(A)  +  Gr  +  Gr*log(A)
log(V)  =  log(A)  +  Gr  +  Gr*log(A)
log(V)  = A  +  Gr  + A*Gr

The variable (A = log(Ar) is already on a logarithmic scale so the first two models are
double logarithmic scaling, and hence biologically uninterpretable, as follows.

V  = log(log(Ar))  +  Gr  +  Gr*log(log(Ar))
log(V)  =  log(log(Ar))  +  Gr  +  Gr*log(log((Ar))

The third model is a power law (V scales as Ar$) because A was already on log scale.
log(V) =  $o  + ($A + $A@Grp@ Grp)log(A) +  $gGr@ Gr  
V = 10$o A($A +$Gr*Gr) 10 $Gr*Gr 

All three  models resulted in bowl shaped residual plots and so were discarded.

The following models were then tried.
         1/V  =  1/A  +  Gr  +  Gr*(1/A)
         V2  = A  +  Gr  +  Gr*A
Both  models resulted in bowl shaped residual plots and so were discarded.

To develop an acceptable model, the residual plot was examined more closely by
comparing it to the plot of V against activity ratio.  Taken together, these two graphs
suggest that the relation of V to activity ratio is linear at activity ratios above  0.7, with
a different relation at smaller levels of A = log( aR).  A new variable, called level
(factor with two levels), was introduced to control for this. 

1.  Construct Model
V =  $o  +  $A@ A +  $Gr@ Gr  +  $Lvl@Lvl  +  $A@Lvl@ A@ Lvl +  $A@Gr@ A@ Gr +  ,

2.  Execute Analysis
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 MTB > plot 'res' 'fits'
          -                               *
  res     -                                                *
          -
      0.70+
          -                *                        *
          -             *                                      *
          -      *                     *
          -             *                  *
      0.00+                 *
          -         *
          -           *                        * *
          -                                             *
          -                                         *
     -0.70+                           *  *                  *
          -                     *
          -
            ----+---------+---------+---------+---------+---------+--fits 
              -12         0        12        24        36        48

 Analysis of Variance for V    
   Source     DF     Seq SS     Adj SS     Adj MS       F      P
   Lvl         1    2956.08      14.08      14.08   24.25  0.000
   A           1    1255.08     360.51     360.51  620.81  0.000
   Gr          3    1760.80    1254.03     418.01  719.83  0.000
   Gr*A        3       3.11      15.59       5.20    8.95  0.003
   Lvl*A       1      32.27      32.27      32.27   55.56  0.000
   Error      11       6.39       6.39       0.58
   Total      20    6013.72  

3.  Evaluate Model. 

Straight line assumption for regression variable log(aR) now acceptable.

7.  ANOVA Table.

Note that the p-values are several orders of magnitude less than 5% and so we can
forego evaluation of the assumptions for these p-values because a randomized p-value
will not change our decision.  We skip to step 9.

9.  Declare decision.
The ANOVA table showed that showed that both interaction terms were significant.
Slopes were heterogeneous across classes (A*Gr was significant).
This conclusion differs from that arising from the initial analysis (based on an
inappropriate model), which would have been that rate of increase in V with increase
in A is uniform across groups (F = 0.07, p = 0.973).

10.  Evaluate parameters.
Because the interaction is significant we cannot move on to testing the group effects.
Further, we must estimate a slope for each group within each level, a total of 8
different slopes.  We only have 21 observations, so estimating 8 slopes will be 
impractical.  We have arrived at a statistically acceptable model, but cannot use it to
undertake analysis of the parameters of biological interest.



7Chapter 14.3

 MTB > glm 'V' =   'A'   'A2'     'Gr'     'A'*'Gr'   'A2'*'Gr';
 SUBC> covariate  'A'   'A2';
 SUBC> fits c4; 
 SUBC> residuals c5.
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1.  Construct Model
Next, a quadratic expression was tried.  

V = Gr + A + A2 + Gr*A + Gr*A2

where A = log(Ar)
V =  $o  +  $A@ A +  $A2@ A2  +  $Gr@ Gr  +  $A@Gr@ A@ Gr +  $A2@Gr@ A2@ Gr +  ,

2.  Execute Analysis

3. Evaluate Model

a.  Straight line assumption
There is no prominent bowl or
arch in this graph, although there
some indication that the relation
of V to log(Ar) at low values
(eight smallest fitted values)
differs from that at higher values
of log(Ar).

b.  Homogeneous error assumption (used in estimating parameters) acceptable.      
Residuals do not change in any systematic way with fitted values (no cones).

c.  If n small, evaluate assumptions for p-values from chisquare (t, F) distributions.
n = 21

Homogeneous?  Yes
Sum(res) = 0?  Yes
Independent? 

Each residual plotted against its
neighbor, in order of low to high
log(Ar) values within each bath
group.

Clear pattern of negative
dependence across all data and
within each group.  
Residuals tend to pattern of + !
+ ! + within each group.

Normal? Acceptably normal
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4. State population and whether sample is representative.
Membrane potential of all nerves in all electrolytic baths ?  Not likely.  
Membrane potential of all nerves, if placed in these four baths ?  Probably not.
Membrane potential of nerves from all squid in these four baths ?  Possibly.
Membrane potential of all nerves from one squid in these four baths ? Maybe.
All possible measurements of membrane potential of one nerve from one squid in

these four baths ?  Yes.

5. Decide on mode of inference.  Is hypothesis testing appropriate?
Yes.  We wish to test whether the slopes differ among cation baths.

6.  State HA Ho pairs, test statistic, distribution, tolerance for Type I error.
Here are the HA / Ho pairs, listed in the order in which they will be tested. 
Hypotheses concerning heterogeneity of slopes are examined first.

Interaction term A*Gr.  Are the slopes different among the groups ?
Does change in membrane potential V with change in activity ratio A = log(Ar) depend
on electrolytic bath group Gr?

HA:   $aR[Sr-Na] Ö $aR[Ca-K]  Ö  $aR[Ca-Na] Ö  $aR[Ca-Li]
The slopes differ

Ho:   $aR[Sr-Na] = $aR[Ca-K]  =  $aR[Ca-Na] =  $aR[Ca-Li]
The slopes do not differ

This pair is equivalent to the following hypotheses concerning variances.
HA:  Var($A*Gr*A*Gr)  >  0 Slopes differ hence variance present.
Ho:  Var($A*Gr*A*Gr)   =  0 Slopes same so no variance among slopes.

Interaction term A2 *Gr.  Do the curvature of the slope differ among cation groups?
Does change in membrane potential V with change in activity ratio aR depend on
whether activity ratio is high or low (Lvl  greater or less than 0.7).

HA:   Var($A2*Gr *A2 *Gr)  >  0
Ho:   Var($A2*Gr *A2 *Gr) =  0

Categorical term (Gr = type of electrolytic bath).  This is a fixed factor.
Goal of the analysis was to compare rate of change in potential with change in activity
ratio across groups.    If rate of change is the same (interaction terms not significant)
then we could examine this factor. 

We expect  membrane potential to differ  among electrolytic baths
HA:  $Gr[Sr-Na] Ö  $Gr[Ca-K]  Ö  $Gr[Ca-Na] Ö  $Gr[Ca-Li]
Ho: $Gr[Sr-Na] =  $Gr[Ca-K] =  $Gr[Ca-Na] =  $Gr[Ca-Li]

This pair is equivalent to the following hypothesis concerning variances
HA:   Var($Gr) > 0 Means differ hence there is variance in  membrane potential

due to bath type.
Ho:   Var($Gr) = 0 No variance due to bath type.

Regression term A = log(Ar).  (relation of membrane potential to activity ratio)
If the rates are the same across cation groups (no interaction) then it is of interest to
examine this term.
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Source DF Seq SS Adj SS Adj MS F P
A=log(Ar) 1 4197.01 1122.52 1122.52 4447.74 0
Group 3 1768.58 801.33 267.11 1058.36 0
A^2 1 26.41 8.76 8.76 34.7 0
Group*A 3 18.44 9.84 3.28 13 0.001
Group*A^2 3 1.01 1.01 0.34 1.33 0.325
Error 9 2.27 2.27 0.25
Total 20 6013.72

Term Coef SE Coef T P
A^2*Group

1 -0.21 1.44 -0.14 0.89
2 -0.11 0.72 -0.15 0.88
3 0.67 0.58 1.15 0.28

6.  State HA Ho pairs, test statistic, distribution, tolerance for Type I error.
State test statistic F-ratio
Distribution of test statistic F-distribution
Tolerance for Type I error 5% (conventional level)

7. ANOVA

8.  When assumptions not met, decide whether to recompute p-values. 
Assumptions not strongly violated and p-values far from 5%, hence recomputing

p-values will not change decision.

9.  Declare decision, with evidence.
As in any ANCOVA, we start with the interaction term.  If the slopes are
heterogeneous there is little point in trying to interpret the variable of interest, the effect
of cation system on membrane potential.  

reject Ho:  Var($A*Gr)  =  0 0.001  =  p  <  "  =  0.05 F3,9 = 13
accept HA:  Var($A*Gr)  =  0 the slopes differ across baths.
accept Ho:  Var($A2*Gr)  =  0 0.325 =   p   >  "  =  0.05 F3,9 = 1.33

the shape of the quadratic is unchanged across groups

For a complex analysis of this sort, it is best to report the entire table, showing
Sources of variance, df, SS, MS, F  and p values.

Before concluding that the shape of the
quadratic expression is constant across
cations groups, we examine the
individual contrasts.
There is no evidence of change in the
shape of the quadratic term across groups in the components of the overall interaction
term. 

No conclusion will be drawn about all nerves when placed in these 4 cation systems. 
Inference was made to a more restricted population, all possible measurements on
small number of one type of nerve.  The conclusion about this statistical population
can then be used to form expectations about membrane potential in other situations,
keeping in mind that only a limited number of nerves were measured.
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Term Coef SE Coef T P
Constant 17.75 0.17 103.64 0.000
A=log(Ar) 22.87 0.34 66.69 0.000
Group

1 -14.53 0.33 -44.40 0.000
2 -2.28 0.32 -7.05 0.000
3 5.08 0.27 19.02 0.000

A^2 3.07 0.52 5.89 0.000
A*Group

1 -3.59 0.84 -4.26 0.002
2 -0.35 0.48 -0.74 0.481
3 2.67 0.48 5.61 0.000

10. Analysis of parameters of biological interest.

Our conclusion is that there is a difference in
the linear component of change in membrane
potential with activity ratio, but no change in
the shape of relation, as expressed by the
quadratic term.  Here are the coefficients
estimated by the general linear model.

The coefficient for the quadratic term is
3.0668 mV.  To estimate the expression for
each cation group we write the GLM for each
group, then rearrange it as follows.

V =  $o  +  $A@ A +  $A2@ A2  +  ,
V !  $A2@ A2  =  $o  +  $A@ A+  ,
V ! 3.0668@ A2  =  $o  +  $A@ A+  ,

We compute the value of the expression on the left for each observation in a group,
then regress this new variable against A = log(Ar)
Here are the results.  

The regression equation is
mV1-3.07A^2 = 3.20 + 19.2 A

Predictor        Coef     SE Coef          T        P
Constant       3.1998      0.2492      12.84    0.006
Ar1           19.1788      0.4716      40.67    0.001

The regression equation is
mV2-3.07A^2 = 15.4 + 22.6 A

Predictor        Coef     SE Coef          T        P
Constant      15.4203      0.0590     261.38    0.000
AR2           22.5742      0.0830     271.85    0.000

The regression equation is
mV3-3.07A^2 = 23.2 + 24.8 A

Predictor        Coef     SE Coef          T        P
Constant      23.1789      0.2794      82.96    0.000
AR3           24.7968      0.2929      84.66    0.000

The regression equation is
mV4-3.07A^2 = 29.3 + 24.6 A

Predictor        Coef     SE Coef          T        P
Constant      29.3233      0.2621     111.89    0.000
AR4           24.5701      0.2709      90.69    0.000

Each equation is then rewritten to standard form.
Group 1 mV1 = 3.20 + 19.2 A + 3.07A^2 Sr-Na
Group 2 mV2 = 15.4 + 22.6 A + 3.07A^2 Ca-K 
Group 3 mV3 = 23.2 + 24.8 A + 3.07A^2 Ca-Na  
Group 4 mV4 = 29.3 + 24.6 A + 3.07A^2 Ca-Li

The rate of change in membrane potential with change in the log of the activity ratio is
greater for the calcium baths than for the strontium bath.  The anion (K, Na, or Li)
has no significant effect.
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Summary
This example of ANCOVA illustrated:

(1) Revision of model to obtain appropriate structural model with acceptable
residuals (no bowls or arches).

(2) Dependence of the statistical conclusion on the model structure.  In this case the
rate of change in membrane potential appeared to be uniform across the four
cation groups, when a linear model was used.  However, the analysis of residuals
showed that a linear model was not consistent with the data.  When a model was
adopted that was consistent with the data (no bowl or arch in residual plot), there
was a heterogeneity in rate of change across the four groups. 

This example shows how model revision can improve the analysis of data.
This is an example of reasoning about biological relationships, using a model.  In this
case we learned something about this data, by revising the model.  We learned the
relation between membrane potential in nerves depends on activity ratio, but that this
relationship changes in going from low to high activity ratios.  We could use this
information in further work with nerves.  We would want to keep this change in mind
in designing further experiments, or in working out how nerves function.
 


