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Model Based Statistics in Biology.    
Part IV.  The General Linear Model.  Multiple Explanatory Variables. 
Chapter 14.1   ANCOVA - Comparison of Slopes 
 
 
 
 
 
 
 
 
 
 
 
 
ReCap Part I (Chapters 1,2,3,4)  Quantitative reasoning is based on models, including 
statistical analysis based on models. 
ReCap Part II (Chapters 5,6,7) 
Hypothesis testing uses the logic of the null hypothesis to declare a decision. 
Estimation is concerned with the specific value of an unknown population parameter. 
ReCap (Ch 9, 10,11) The General Linear Model with a single explanatory variable. 
ReCap (Ch 12) GLM with more than one regression variable (multiple regression) 
ReCap (Ch 13) GLM with more than one categorical variable (ANOVA). 

 
 
 
 
 

 
Wrap-up.  
ANCOVA is applied to data situations that require both ratio and nominal scale 
explanatory variables.   One important use is to compare two or more regression lines.  
 
The analysis demonstrates the use of categorical along with ratio scale variables within 
the framework of the general linear model.  The categorical variable is species (D. 
persimilis or D. pseudoobscura).  The ratio scale variable is change in heterozygosity 
with altitude.  This example also shows the logic of interaction terms, which are 
examined before main effects. 
 
 
 
 

ReCap.  Part I (Chapters 1,2,3,4), Part II (Ch 5, 6, 7) 
ReCap Part III (Ch 9, 10, 11) 
ReCap Multiple Regression (Ch 12) 
ReCap Multiple Categorical Variables (Ch 13) 
14.1    Comparing Regression Lines 
14.2   Statistical Control 
14.3   Model Revision 
14.4    More than two explanatory variables (to be 
 written) 

Brussard.xls 
Ch14.xls 

Today:    Analysis of Covariance (ANCOVA) 
ANCOVA is a special case of the GLM in which there are both 
nominal scale (categorical) and ratio scale explanatory variables. 
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Introduction.   
The next application of the general linear model compares two functions expressed as 
straight lines.  The data are from Dobzhansky (1948) as reported in Brussard (1984).   
Theodosius Dobzhansky collected data on inversion heterozygosity (assuming Hardy 
Weinberg equilibrium) of 3rd chromosome inversions from two species of fruit fly, from 
Yosemite Park, California.  Inversion heterozygosity is a measure of genetic variability, 
which is the raw material that natural selection acts on to produce descent with 
modification (Darwinian evolution). Thus, the origin and maintenance of genetic 
variability is one of the central questions in population biology. What factors generate or 
erode genetic variability?  Harsher environments at higher altitudes are expected to select 
for narrower range of phenotypes, hence reduce genetic variability.  Does genetic 
variability decrease at higher altitude, due to stronger selection in extreme environments?  
Does the heterozygosity gradient differ in two co-occuring species of fruitfly Drosophila 
persimila and Drosophila pseudoobscura? 
 
1. Construct model 
Verbal model.  
 Inversion heterozygosity decreases with altitude, depending on species. 
Graphical model. [species labels need to be switched] 
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Draw angles that compare 
these two lines  
Add question marks to 
query whether these are 
parallel. 

1. Construct formal model 
Variable    Response or    Fixed or 
   Name  Symbol Explanatory  Scale  Random 

 Heterozygosity    H  Response  Ratio 
 Altitude    Alt  Explanatory  Ratio 
 Species     Sp  Explanatory  Nominal Fixed 
 
The response variable is inversion heterozygosity in two species of fruit fly, Drosophila 
persimilis and D. pseudoobscura    Hper  =  %     Hps = % 
 
The ratio scale explanatory variable is altitude  Alt = km 
 
The nominal scale explanatory variable is species   
  Sp = D. persimilis or D. pseudoobscura 
 
Formal model 
GLM:  H = βo + βAlt·Alt    +   βSp·Sp    +    βSp x Alt·Alt· Sp   + ε 
 
This looks just like a two way ANOVA.   
This model has much in common with a two-way ANOVA. 
 
 
The βo parameter stands for the overall mean, just like an ANOVA. 
The βSp parameter stands for the contrast between means, just like an ANOVA. 
 
The βAlt parameter stands the heterozygosity gradient (%/km).  
 
 
The βSp x Alt parameter stands for the contrast in 
heterozygosity gradients, βper  versus βps 
 
The parameter βAlt  x Sp represents the degree to 
which the slopes in each class differ  
 
 
 
 

 
  

Begin modifying Fig L18a to L18b 
Add βo 
Add βSp 

Add regression 
line though βo 

Sequential addition (L18b from model) went well.  
In 1998 separate regression lines(L18a) erased 
before starting. 
In 2000 L18b built up from L18a.   
This went well and quickly. 
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2.  Execute analysis. 
Place data in model format:  
 Column labelled H, with response variable heterozygosity 
 Column labelled Alt, with explanatory variable Altitude 
 Column labelled Sp, with explanatory variable species labels Dper or Dps 
Code the model statement in statistical package according to the GLM 
   H  =  βo  + βSp·Sp  + βAlt·Alt +  βAlt·Sp·Alt· Sp +  ε 
 
 
 
The ratio scale variable is labelled as a covariate in this package and SPSS. 
Other packages (e.g. SAS) assume variables are on a ratio scale,  
 hence categorical variables must be defined in the model statement. 
 
 
 
In R and SPlus the distinction between categorical and regression variable is determined 
by the definition of the explanatory variables in the data object (data=Brussard) 
 
 
 
 
In this example  Alt exists as a numerical variable in the data object, while Sp exists as a  
factor (categorical variable) in the data object because it consists of letters, not numbers.    
Fits and residuals are obtained depending on the package.  
 model statement output of fitted values and residuals  (SAS) 

parameters reported by GLM routine  (SPSS, Minitab, R) 
or direct calculation from model parameters 

 
Statistical packages differ in how they report parameter estimates. 
For our purposes, we can think of the parameter estimates as follows: 
  𝛽መo is the mean heterozygosity for one of the species. 
  𝛽መSp as the contrast (difference) in mean heterozygosities 
  𝛽መo +  𝛽෡ Sp is the mean heterozygosity of the other species 
  𝛽መAlt is the heterozygosity gradient for the reference species. 
  𝛽መAkt x Sp as the contrast in heterozygosity gradients 
  𝛽መAlt + 𝛽መAkt x Sp is the heterozygosity of the other species 
 
The slope for D. persimilis is the more negative of the two.  
 Hper = 0.580 – 0.127 Alt 
 Hps = 0.712 – 0.0145 Alt 
 
The residuals for the GLM (both species) are computed from the fitted values. 
  

MTB > glm H = 'Sp' 'Alt'  'Sp'*'Alt'; 
SUBC> covariate  'Alt'. 

Proc GLM; 
  Model H = Sp Alt Sp*Alt; Class Sp; 

Hmodel < - lm(H ~ Sp + Alt + Sp*Alt, 
 Data = Brussard) 
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MTB > hist 'res';  
SUBC> increment .04.  
  
Histogram of res   N = 14  
  
Midpoint   Count  
 -0.0800       2  **  
 -0.0400       1  *  
  0.0000       7  *******  
  0.0400       3  ***  
  0.0800       1  * 

3.  Evaluate the model    Plot residuals versus fitted values. 
 
 
 

 
 
 
 
 
 
 
 
 
 
A. Straight line assumption is acceptable -- no bowls or arches in plot. 
B. Sample size is small. (n = 14) so evaluate assumptions for p-values calculated from 
chisquare, t, or F distributions 
 
B1.  Homogeneous error assumption (used in estimating parameters) is acceptable.       
Residuals do not change in any systematic way with 
fitted values (no cones). 
 
B2 Normal?  
 
The residuals look normal when plotted as a 
histogram. 
 
 
B3.  Independent? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Each residual is plotted against its neighbor, with data ordered by altitude. 
 There is some indication of trends -- residuals are not completely independent. 

The assumptions are considered to be met because there are no large violations. 
 

MTB > let c9 = lag('res')  
MTB > plot c9 'res'  
         _                                                *  
    0.050+  
         _    *        *  
 C9      _  
         _                 *                      *  *  
         _                                *                      *  
    0.000+  
         _                                *        *  
         _  
         _  
         _  
   -0.050+                                       *  
         _  
         _                                      *  
         _  
         _                                      *  
   -0.100+            
           ----+---------+---------+---------+---------+---------+--res      
          -0.090    -0.060    -0.030     0.000     0.030     0.060 

MTB > plot 'res' 'fits'  
         _                   *  
    0.050+  
         _            *                           *  
 res     _  
         _                                                     2*  
         _    *                    *                          *  
    0.000+  
         _                                                       **  
         _  
         _  
         _  
   -0.050+                                                    *  
         _  
         _          *  
         _  
         _                               *  
   -0.100+  
           ----+---------+---------+---------+---------+---------+--fits     
            0.20      0.30      0.40      0.50      0.60      0.70 
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4. Partition df and SS according to model.  
  
 Y   =   βo   + βAltAlt       + βSpSp       + βSp x AltAlt· Sp   + res 
 14–1  =         1       +     1        +      1               +10 
 0.51377 =  0.05991 0.39111 0.03798  + 0.02477 
 
    Calculate likelihood ratio for reduced model (all terms in the model)  

𝐿𝑅 =
𝐿൫𝛽ௌ௣, 𝛽஺௟௧ , 𝛽ௌ௉ ௫ ஺௟௧ , 𝜎 ห𝐻)

𝐿(𝜎 |𝐻)
 

 

  𝐿𝑅 =  ቀ
଴.଴ଶସ଻଻

଴.ହଵଷ଻଻
ቁ

(ିଵସ ଶ⁄ )
 LR = 165 >100  

 
The model has strong evidential support despite the small sample size. 

 
5.  State the populations and whether the sample is representative. 
The chance set-up (Hacking 1965 p8, 114) consisted of repeated measurements (trials) 
with a procedure that generates a unique result (% heterozygosity) from a population of 
possible results (any value of heterozygosity from 0 to 1). On logical grounds this is the 
best estimate of the population of flies catchable by the investigators. Does the sample 
represent inversion heterozygosity relative to altitude in all fruit flies at the study sites? 
Or perhaps  fruit flies at all sites in Yosemite Park ?  Perhaps all fruit flies in the world? 
The results are taken as representative of genetic inheritance in fruit flies. 
 
5. Decide on mode of inference.  Is hypothesis testing appropriate? 
This is an observational study and so there are many potential sources of uncontrolled 
variability. An evidentialist approach is appropriate.  Given the evidential support for the 
omnibus model it is of interest to calculate the evidential support for each term in the 
model.   
 
10.  Report and interpret parameters of biological interest. 
In this model there are three terms, all fixed.  
Interpretation begins with the interaction term. 
 
Interaction term.  This is a fixed effect because both of its components are fixed. 
Is the model with the interaction term more likely than the model without the term? 

𝐿𝑅 =
𝐿൫ 𝛽ௌ௣ ௫ ஺௟ , 𝜎 ห𝐻)

𝐿(𝜎 |𝐻)
 

 
In other words are the heterozygosity gradients the same ? 
 
If there is little or no evidence of heterogeneous slopes we can interpret the component 
terms βAlt and βSp independently of each other. 
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10.  Report and interpret parameters of biological interest. 
Species term.   Model I.  Fixed effects.   
Does the mean for D. persimilis differ from that for D. pseudoobscura ? 

𝐿𝑅 =
𝐿൫ 𝛽ௌ௣, 𝜎 ห𝐻)

𝐿(𝜎 |𝐻)
 

 
Altitude term.   Model I.  Fixed effects.   
How good is the evidence for overall gradient? 

 

𝐿𝑅 =
𝐿( 𝛽஺௟௧ , 𝜎 |𝐻)

𝐿(𝜎 |𝐻)
 

 
Are there more specific hypotheses about parameters ?   
Yes, the study was undertaken to find whether heterozygosity decreases in 
increasingly harsh environments at higher altitudes.  If there is little support for an 
interactive effect, we drop the species term and report the overall gradient βAlt. 

 
Sequential vs adjusted SS.  When a covariate (regression variable) is included in the 
model, some of the explanatory variables may well be correlated.  When they are, 
the partitioning of the SS will depend on the order in which terms are listed.  The 
result is a sequential SS. In this example the focus is the altitudinal gradient and so a 
sequential SS could be used.  The result is the SS for altitude, adjusted for S 

 
 
If the model had been written in a different order, then the partitioning would come out 
differently.  If Sp had been the last term in the model, SSSp it would be only 0.01267, 
rather than 0.39111.  With sequential partitioning it is "first come first serve."  That is, a 
term will generally be allocated a larger SS if it occurs early in the queue, rather than 
later.   
 
 
  

 Source df Seq SS Adj SS 
   Sp  1   0.39111 0.01267 
   Alt  1   0.05991 0.05991 
   Alt*Sp 1   0.03798 0.03498 
   Res    10   0.02477  0.02477 
   Total 13  0.51377 does not add up 
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10.  Report and interpret parameters of biological interest. 
 
The sequential SS and is of interest in some cases.  In the fly heterozygosity example, 
we may have been interested in whether the two species differ in heterozygosity after 
controlling for (removing the effects of) altitude.  The altitude term is placed first in 
the list, so that we can examine whether there are species differences after altitude 
has been removed. 
 
If we have no reason to adjust for order effects we use the SS allocated to each term 
when it occurs last in the model.  This adjusted SS allows us to examine effects 
controlled for other terms.  It is a conservative procedure.  That is, it will allocate a 
relatively small SS to each term, generally smaller than if the term were listed early 
in the model. 
 
One consequence of this tactic is that the sums of the squares no longer sum to the 
total SS.  
 
The sequential partitioning of the sum of squares is called Type I SS.  The Adjusted 
SS is called Type III SS.  There are other ways to partition the SS, but Type I and 
Type III are the most commonly used. The residuals will be the same, regardless of 
how we partition the SS.  So the choice of sequential or adjusted SS has no effect on 
diagnostics --straight line acceptable ?  errors meet assumptions? If we use the Adj 
SS to compute the likelihood ratios, the SS ratio for each term is taken relative to the 
residual.   

 
 
 
 
2.533 = 1+0.03798/0.02477 
LR = 2.533 14/2  = 670 
 

As with two-way ANOVA, we begin interpretation with the interaction term.   
The evidence for an interactive effect is substantial.  An interactive effect is 670 
times more likely than no interactive effect.       
 
The heterozygosity gradient depends on species (LR = 670) so we report the 
gradient in each species.  

 
 
 
 
This output reports a t-statistic, which we can use to calculate the likelihood ratio. 
  

Source Df SS 1+SSratio LR 
Alt 1 0.05991 3.419 5457 
 Sp 1 0.1267 6.115 319745 
Alt*Sp 1 0.03798 2.533 670 
Res 10 0.02477 
Total 13 

     Value    Std. Error   t value  Pr(>|t|)  
(Intercept)   0.5801   0.0529     10.9711   0.0001 
        Alt  -0.1273   0.0262     -4.8619   0.0046 
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10.  Report and interpret parameters of biological interest. 
 
Calculating the LR from a t-statistic. 
The calculation begins by squaring the reported value of t for the altitude gradient. 
 

 
SS ratio =  t2/df,  df = 10. 

 
Heterozygosity decreases with altitude in D. persimilis  (LR = 4873) so we report the 
regression equation for the heterozygosity gradient.  

 
 H = 0.58 –0.127 Alt 

 
Heterozygosity does not change with altitude in D. pseudoobscura (LR = 2) 

 
 
 
 
 

t t2  t2 /10 1+ t2 /10 LR 
1.1195 1.25 0.13 1.13 2 

 
There is no evidence of change with altitude (LR = 2), so instead of an equation for 
the gradient, the heterozygosity in this species is adequately summarized by the 
mean 

 
 mean(Hpseu) = 0.686 

t t2  t2 /10 1+ t2 /10 LR 
4.8619 23.64 2.36 3.36 4873 

     Value    Std. Error   t value  Pr(>|t|)  
(Intercept)   0.7117   0.0243     29.2581   0.0000 
        Alt  -0.0144   0.0120     -1.1995   0.2841 


