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Model Based Statistics in Biology.    
Part IV.  The General Linear Model.  Multiple Explanatory Variables. 
Chapter 13.6   Nested Factors (Hierarchical ANOVA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 on chalk board 
 

ReCap Part I (Chapters 1,2,3,4)  Quantitative reasoning is based on models, including 
statistical analysis based on models. 
ReCap Part II (Chapters 5,6,7) 
Hypothesis testing uses the logic of the null hypothesis to declare a decision. 
Estimation is concerned with the specific value of an unknown population parameter. 
ReCap (Ch 9, 10,11) The General Linear Model with a single explanatory variable. 
ReCap (Ch 12) GLM with more than one regression variable (multiple regression) 
ReCap (Ch 13) GLM with more than one categorical variable (ANOVA). 
 Two fixed factors (Ch 13.1, Ch13.2) 
 One fixed and one random factor (Paired t-test,  Randomized block), 
 One random and one or more fixed factors (Repeated measures) 

 
Wrap-up.  Comparison of hierarchical with two-way ANOVA. 
 
Two-way ANOVA has an interaction term.  Testing starts with this term. 
 
In randomized blocks, the interaction term is present logically, but assumed to be zero if 
treatments were assigned randomly to blocks. 
 
Hierarchical ANOVA differs from crossed designs.  The interaction term is known to be 
zero, because units of analysis cannot be matched across treatments. 
 

ReCap.  Part I (Chapters 1,2,3,4), Part II (Ch 5, 6, 7) 
ReCap Part III (Ch 9, 10, 11) 
ReCap Multiple Regression (Ch 12) 
13.1  Fixed Effects ANOVA (no interactive effects) 
13.2  Fixed Effects ANOVA (interactive effects) 
13.3  Fixed*Random Factors (Paired t-test) 
13.4  Fixed*Random Factors (Randomized Block) 
13.5  Fixed*Random Factors (Repeated Measures) 
13.6  Nested Random Factors (Hierarchical ANOVA) 
13.7  Random within Fixed (Hierarchical ANOVA) 
13.8 More Than Two Factors (to be written) 

Fly wing length data 
Sokal and Rohlf Box 10.1 
Ch13.xls 

Today:    Special case of two factor ANOVA: Hierarchical ANOVA 
Both factors random. 
The logical relation of one factor to another is hierarchical:  
 one factor is nested within another.   
This is in contrast to crossed designs, such as two-way ANOVA 
  and randomized blocks. 
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Introduction.   
In the examples so far we analyzed variation in the response variable relative to crossed 
factors.  The levels within one explanatory variable (e.g. food type) could be matched 
with levels in a second explanatory variable (e.g. sex).  Consequently, we can display the 
data in a two-way table.  In such a table the numbers in the table are the response  
variable.  The column labels are one factor.  The row labels are the other factor.   
Here are 4 examples—2 with fixed factors and two with a random and a fixed factor. 
 
Response variable  Explanatory variable Explanatory variable  
Limpet respiration  Species (fixed)  Salinity (fixed by experiment) 
Rat weight gain  Protein source (fixed) Protein Level (fixed) 
Hours of extra sleep Subject (random)  Drug (fixed) 
Tribolium dry weight Block (random)  Genotype (fixed) 
 
Here is an example with 2 explanatory variables that are nested, not crossed.   
Sokal and Rohlf (1995 Box 10.1) report wing lengths of 4 flies in 3 cages.   
 
Response variable  Explanatory variable Explanatory variable  
Fly wing length  Cage (random)  Fly (random) 
 
We have no information to match a fly in Cage I (Fly A, B, C, D)  to a fly in Cage II (Fly 
E, F, G, H).  Here is a diagram. 

 
We have two wing measurements but no way to match these across flies. Wing length is 
nested within fly.    
 
Tree.  A graphical expression of  hierarchical ANOVA is a tree.  For example we draw a 
few branches representing genera, then for each branch draw twigs representing species.  
The twigs cannot be aligned across branches, so the design is hierarchical.  

  
Mobile.  Another visualization is a hanging mobile.  
Near the top of the mobile are branches that rotate 
around a balance point.  Beneath each branch there are 
sub-branches, which rotate around a balance point 
below the branch.  The sub-branches beneath one 
branch rotate independently of those beneath another 
branch.  They cannot be aligned.  The design is 
hierarchical. D

B CA E F

A
58.5
59.5

B
77.8
80.9

C
84.0
83.6

D
70.1
68.3

Cage I

E
69.8
69.8

F
56.0
54.5

G
50.7
49.3

H
63.8
65.8

Cage II

I
56.6
57.5

J
77.8
79.2

K
69.9
69.2

L
62.1
64.5

Cage III
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Crossed versus nested factors. 
Two crossed factors can also be shown as a branching diagram. However a branching 
diagram does not always show a nested design.  To distinguish crossed from nested, we 
inspect a two way table. 

Fly within Cage 
I A B C D                 

Cage II E F G H   
III                 I J K L 

 
The table has more empty than occupied cells.  The interactive effect cannot be 
estimated. The interactive variability becomes part of the lower level term as follows:  
 Fly +  Cage x Fly - - > Fly(Cage)     
More generally: B  +  A x B   - - > B(A)     
  
The symbol  B(A) reads naturally from left to right  as  “B within A.”   Set notation also 
reads left to right:  B  A.  This notation is readily used in reading, thinking, and writing 
about nested designs.  Most statistical packages use this notation.  R does not.  It uses 
Cage/Fly or more generally A/B where B is nested within A.  

Here is an accounting of degrees of freedom showing how joining an interaction term 
with the lower level term produces the df for the nested term.   
 
    Crossed            Nested    
 Source df Source df Source df 
 Factor A 3-1 = 2 Factor A 3-1 = 2 Factor A 3-1 = 2  
 Factor B 4-1 = 3 Factor B(A) 3 + 6 = 9 Factor B(A) (4-1)*3 = 9 
 A x B 2 x 3 = 6 
 B + A  B   - - > B(A)    
 3  +    6 = 9 
 
A nested factor ANOVA can have mixed terms—random within fixed.  It can also have 
all random terms—random within random. 
 
       Both Random                        Mixed       
 B crossed with A B nested in A B crossed with A B nested in A 
 A Random A Random  A Fixed A Fixed 
 B Random B(A) Random  B Random B(A) Random 
 A  B Random   A  B Mixed 
 
Not all random factors are nested. For example, a latin square design has two random 
factors that are crossed. 
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Example   Data from Sokal and Rohlf (1995) Box 10.1 
Two measurements made on the left wings of 4 mosquitos in each of 3 cages. 
This is a nested design.  We cannot match flies across cages.   
At a lower level, we cannot match wing measurements across flies.  
 
1. Construct model 
Verbal model.  
Does mosquito wing length vary among cages as well as among mosquitoes? 
 
Graphical model.  Plot of the means of the measurements for each  

fly in each cage.    
   
   
   Fig 
L17b 
 
 
 
 
Response variable is 
winglength   
L  =  micrometer units 
 (ratio type of scale) 
 
 
 
 

First explanatory variable is cage      Xcage  (categorical variable) 
Second explanatory variable is fly within cage Xfly  cage (categorical variable) 
 or equivalently Xfly(cage)   
 
Each fly gets a different label.  We avoid using the label “Fly A” in cage II or III   
  because flies cannot be matched across cages. 
 Xfly(cage) =  Fly A    Fly B    Fly C    Fly D   in cage I 
 Xfly(cage) =  Fly E    Fly F    Fly G    Fly H   in cage II 
 Xfly(cage) =  Fly J    Fly K    Fly L    Fly M   in cage III  

GLM notation shows parameters.  Component notation distinguishes random factors 
(roman letters) from  fixed factors (greek letters).    

 Write GLM: Y  = o + cageXcage + fly(cage)Xfly(cage) + res 
Component Yijk =  + Ai + Bij + εijk 



 5 

2.  Execute analysis. 
Place data in model format:  
 Column labelled L, with response variable fly wing length 
 Column labelled Xcage, with explanatory variable Xcage = I, II, or III 
 Column labelled Xfly(cage) with label (number) for each fly 
 
Code model statement in statistical package according to the GLM 
  Len =  βo  +  βcage ∙Xcage + fly(cage)∙Xfly(cage)  + ε 

  
 
Minitab 
 
R-code 

 
The code estimates of the overall mean ( o )  
and the mean for each cage (   o cage cageX  ).   
The fitted values are the means for each fly (   

( ) ( )  o cage cage fly cage fly cageX X   ). 

 o   = Mean(L) = 24-1 1599.2 = 66.633 
 Mean(LcageI) = 8-1 582.7 = 72.84 

   o cage cageX   = Mean(LcageII) = 8-1 479.7 = 59.96 

 Mean(LcageIII) = 8-1 536.8 = 67.10 
 

3.  Evaluate the model    Plot residuals versus fitted values. 

   
A.   No line fitted in model, so skip evaluation of straight line assumption. 
B1.  Residuals homogeneous?   Yes. 
  No systematic change in residuals with increase in fitted values (i.e. no fans). 

MTB > anova 'Len' = 'cage'   'fly'('cage');  
SUBC> random 'cage' 'fly'('cage'). 

 MTB > plot 'res' 'fits'  
 res     _                                                *  
         _  
         _                         *  
      1.0+                            *     *  
         _      *       *  
         _                   *                           *  
         _                *                 *  
         _                                                       *  
      0.0+                                   2  
         _                                                       *  
         _                *  *              *  
         _      *                                        *  
         _              *                   *  
     _1.0+                            *  
         _                         *  
         _  
         _                                                *  
           ____+_________+_________+_________+_________+_________+__fits    
            49.0      56.0      63.0      70.0      77.0      84.0  

FlyMod8<-aov(Len ~ Cage + Error(Cage/Fly), SRBx10_1) 
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 MTB > let c6 = lag('res')  
 MTB > plot c6 'res'  
 C6      _                                *  
         _  
         _  
      1.0+              *       *  
         _                 2  
         _   *                               *  
         _                 *     *  
         _                          *  
      0.0+                             *            *  
         _                                            *  
         _         *                           2  
         _            *                            *  
         _                             *           *  
     _1.0+                                              *  
         _                                                 *  
         _  
         _                                                       *  
           ________+_________+_________+_________+_________+________res       
               _1.20     _0.60      0.00      0.60      1.20  
   
 MTB > corr c5 c6  
 Correlation of res and C6 = _0.567  

 
  3.  Evaluate the model    
B2.  Normal? 
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B2. Normal ?   Yes. 
B3. Independent?    

 
Lag plot shows a downward trend because the data are organized according to cage and 

fly.  The result is negative correlation of adjacent residuals by definition r = - 0.5  
(Anscombe, F.J.  Tukey J.W. 1963. The examination and analysis of residuals. 
Technometrics 5: 141-160)   
Induced correlation is evident in the downward trend in plot of adjacent values.  Lag 
plots are misleading when replication is less then 4 at the lowest level in the analysis 
(at the level of fly in this analysis).  

  
The errors are acceptably homogeneous and normal. 
 

 Histogram of res   N = 24  
 Midpoint   Count  
     _1.5       1  *  
     _1.0       3  ***  
     _0.5       6  ******  
      0.0       4  ****  
      0.5       5  *****  
      1.0       4  ****  
      1.5       1  * 
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4. Partition df and SS according to model. Calculate LR 
 
Compute total df:    n ̶ 1 = 24  ̶  1 = 23  
Partition df according to model 
 Cage term:  3 cages hence 3 ̶  1 = 2 df. 
 Fly term:     4 flies per cage hence 4 ̶  1  = 3 df per cage. 
 3*(4 ̶  1 ) = 9 df for the fly within cage term. 
 
Calculate SStotal   =  23* Var(Len)  =  23*104.43   =    2401.98 
By hand: SStotal = ΣY2  ̶  n ̶1(ΣY)2  =  108962  ̶  2 ̶ 1  ∙ 1599.22  =  2401.98 
 
In Minitab: 
 
 
In a spreadsheet 
 
 
In R 
 
Use statistical software to partition the SStotal and produce the ANOVA table. 

 
 

The subcommand SUBC> random  
forces Minitab to compute the 
correct F-ratio.  

 
Here is R-code to partition df, SS. 
The F-ratios are not correct. 
 

Here is the partitioning of the SStotal. 
 

  
1 - R2 = (15.62/2401.97) = 0.65 % 
LR = (1-R2)(-24/2) = 1.7 x 1026  

The evidence for the overall model is strong so we proceed to a calculation of the 
likelihood for each component of variation. In a model with random factors the likelihood 
ratio and the F-ratio are formed relative to the correctly nested ratio of expected mean 
squares, as described in texts in experimental design (e.g. Cochran and Cox 1957, Quinn 
and Keough, 2002).   

 GLM: Y - βo = βcageXcage + βfly(cage)Xflycage) + res 
Source: total =  cage  fly(cage)  res 
   df 24 ̶ 1 = 3 ̶  1  + 3*(4 ̶  1) +  12 
   SS 2402 = 665.68 + 1720.68 + 15.62 

MTB > let k1 = ssq('Len')  
MTB> print k1 
   k1  2401.98 

=DevSQ(A1:A24) 

> sum( (x - mean(x) )^2 ) 
[1] 2401.98 

MTB> GLM ‘wlength’ = ‘Cage’ ‘Fly’(‘cage’) 
SUBC> random 'cage' 'fly'('cage'). 

 Y - o = cageXcage + fly(cage)Xfly(cage) + res 

FlyMod8<-aov(WLEN ~ Cage + Error(Cage/Fly), 
SRBx10 1) 
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4. Calculate LR 
The likelihood ratios (and F-ratios) for the cage term are not formed relative to the 
residual SS.  They are formed relative to the random term below it in the ANOVA table. 
Here is a step by step procedure to write out the correct LRs and F-ratios. 
 List the terms in the model, as in the ANOVA table 
 List the same term horizontally.  In each row, show the row term. 
    Cage Fly%in% Cage Error   Each EMS includes itself 
EMS Cage Cage       

EMS Fly%in% Cage  Fly%in% Cage      

EMS Error     Error    

        

    Cage Fly%in% Cage Error   Each EMS includes the 
EMS Cage Cage  Error      fixed error term 
EMS Fly%in% Cage  Fly%in% Cage Error    

EMS Error     Error    

        

    Cage Fly%in% Cage Error   Each EMS includes crossed 
EMS Cage Cage Fly%in% Cage Error      (or nested) random terms 
EMS Fly%in% Cage  Fly%in% Cage Error    

EMS Error     Error    

      Correct  
    Cage Fly%in% Cage Error  Denominator MS Identify the denominator MS  
EMS Cage Cage Fly%in% Cage Error  Fly%in% Cage     for the F-ratio 
EMS Fly%in% Cage  Fly%in% Cage Error  Error The denominator MS cancels all 
EMS Error     Error       but the term of interest 
      Incorrect  
    Cage Fly%in% Cage Error  Denominator MS  
EMS Cage Cage Fly%in% Cage Error   Cage MS / Error results in  

  Fly%in% Cage          *two* uncancelled terms. 
EMS Error     Error  Error The F-test is ambiguous 
 

 
= (665.68  + 1720.68)/1720.68   LR = (1.39)-24/2       LR = 51 
= (1720.68 + 15.62)   /15.62       LR = (111.16)-24/2  LR = 1024 

 
 
 

The likelihood ratio for Cage is formed relative to the random term below it. 
The likelihood ratio for Fly(Cage) is formed relative to the random term below it.  
The evidence for the fly within cage term is far stronger than the evidence for the cage 
term. 

df SS 1+ SSratio 
2 665.68 1.39 
9 1720.68 111.16 

12 15.62 
23 2401.98 
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5. State population and whether sample is representative. 
This is a laboratory study with a well established measurement protocol that generates 
data that meets Hacking’s (1965) requirement for likelihood inference (Hacking. I. 1965 
The Logic of Statistical Inference).  Inference requires a procedural statement that 
generates data under reproducible conditions.  A better and better estimate of the value of 
a parameter emerges from the law of large numbers as sample size increases.  
 
Inference is to a population of wing measurements according to a measurement protocol.  
Inference is to a population of cages similar to those in this study.    
 
5.  Choose mode of inference.  Is hypothesis testing appropriate? 
The goal of the analysis is an estimate of variance at different levels.  Estimates such as 
these are central to statistical design. A judgement relative to Type I error is not required. 
A decision at a fixed Type I error is not needed.  We will calculate and report likelihood 
ratios as a measure of evidence. 
 
10.  Report and interpret variances.  
 The parameters in this analysis were not of interest.  The variance due to each 
factor is of interest.  The interest is in the amount of variation, not the contrasts in means. 
The amount of variability due to each factor is used to design efficient experiments. 

  
 
Most of the variability (72%) is among flies.  As a result, in designing an experiment we 
would want to use many flies to reduce the mean square at this level.  The percent 
variability is less at the level of cages, so we would not need to use many cages to reduce 
the mean square at the cage level.  The variability due to measurement error is negligible, 
so we do not need to devote effort to repeating measurements on a single fly. 

  Source         df SS  % 
   Cage 2 665.68 27.7 
   Fly�Cage) 9 1720.68 71.6 
   Error     12      15.62  0.7 
   Total 23 2401.97 


