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      Model Based Statistics in Biology.    
Part IV.  The General Linear Mixed Model.. 
Chapter 13.3   Fixed x Random Effects (Paired t-test) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ReCap Part I (Chapters 1,2,3,4)  Quantitative reasoning is based on models, including 
statistical analysis based on models. 
ReCap Part II (Chapters 5,6,7) 
Estimation is concerned with the specific value of an unknown population parameter. 
Confidence limits use a fixed error rate to span an interval that contains the parameter. 
Hypothesis testing uses the logic of the null hypothesis to declare a decision about a 
parameter 
ReCap (Ch 9, 10,11) The General Linear Model -  Single explanatory variable. 
ReCap (Ch 12) GLM with more than one regression variable  - Multiple regression) 
ReCap (Ch 13) GLM with more than one categorical variable   

 
Wrap-up.   
The paired t-test is a General Linear Model with two categorical variables,  
 i.e. two explanatory variables on a nominal scale.   
 
One of these is fixed (2 classes only), the other is random (many classes).   
 
We are interested in the fixed effects, controlled for the random effects. 
 
 Adding the random factor to the model reduces the error variance, resulting in a more 

sensitive test.  This is called statistical control. 
 

Today:   Paired t-test.   
One response variable Y as a function of two explanatory variables X1 X2.   
Both explanatory variables are categorical, on a nominal scale. 
One categorical variable is fixed, the other is random.   
This is called a mixed model 

ReCap.  Part I (Chapters 1,2,3,4), Part II (Ch 5, 6, 7) 
ReCap Part III (Ch 9, 10, 11) 
ReCap Multiple Regression (Ch 12) 
13.1  Fixed Effects ANOVA (no interactive effects) 
13.2  Fixed Effects ANOVA (interactive effects) 
13.3  Fixed*Random Effects (Paired t-test) 
13.4  Fixed*Random Effects (Randomized Block) 
13.5  Fixed*Random Effects (Repeated Measures) 
13.6  Nested Random Effects (Hierarchical ANOVA) 
13.7  Random within Fixed (Hierarchical ANOVA) 
13.8 More Than Two Factors (to be written) 

Sleep data, two drugs 
Ch13.xls 
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Introduction.   A common experimental design is to measure all levels of a fixed 
variable within each of several units that vary randomly.  For example, we measure the 
effects of first one drug, then another, on each of 10 patients.  The advantage of this 
design is that variation among units can be removed from the analysis, allowing a more 
sensitive test of the factor of interest.   This design is called a Randomized Complete 
Block (RCB) design. If the fixed variable has only two classes, this design is called a 
paired t-test.   To illustrate this analysis, we use data from Cushny and Peebles (1905), 
which Gossett used to introduce the t-test.   
 
1. Construct model 
Data are: hours of extra sleep with two drugs Hyoscyamine  
(Drug A) and  L Hyoscine (Drug B), each administered to 10 
subjects.  Values reported are averages.  The pairing across subject 
allows us to remove the effects of individual variation. 
 
Response variable. T = hours of extra sleep 
 
Explanatory variables are drug and subject. 
Drug    XD = [Drug A,  Drug B] 
Drug is a nominal scale variable with two categories.  
 It is a fixed effect. 
Subject   XS = subject [1,2,3,etc.].  Ten categories, nominal scale. 
 This is a random effect, because the mean value for each subject varies randomly. 
 The levels are not chosen by the investigator. 
 We are inferring to a population of similar subjects.  
 
Here is a table of variables and their characteristics. 

Variable Response or Categorical Fixed or Crossed or 
Name Symbol Units Scale Explanatory or Covariate Random Nested 

Extra sleep T hours ratio response    N/A N/A N/A 

Drug XD A or B nominal explanatory categorical fixed    N/A 

Subject XS  #1 to #10 nominal explanatory categorical random N/A 

Drug x Subj XD ₓ XS  2 by 10 nominal explanatory categorical mixed crossed 
  
Verbal model.  Hours of extra sleep depend on drug. 
 
Graphical model.  
Connect mean value at two levels for each subject. 
Graph shows increase from Drug A to Drug B in all subjects.  
There appears to be little or no interactive effect, because the lines 
rise from left to right, in a more or less parallel fashion.   
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1. Construct formal model 
To begin, we write the formal model with the interaction term. 

 
The model is shown in two forms. Both have the same structure --three explanatory 
terms, one for drug (a fixed effect), one for subject (a random effect), and one for 
interactive effects--the dependence of drug effect on subject.  The GLM notation shows 
model parameters and variables. The variance component notation assigns a greek letter 
(α) to the fixed factor and a roman letter (S) to the random factor.  The interaction term is 
mixed.  For future reference we can use these rules. 
 
 Random x Fixed = Mixed 
 Fixed x Fixed = Fixed 
 Random x Random = Random 
 
The component notation shows subscripts:  i = 2 levels of drug (A and B),  j = 10 
subjects, and k = number of measurements per subject.  In this example we have one 
measurement per subject at each level of treatment.  We have  ijk = 2*10*1 = 20 
observations.   
 
In the extra sleep data we have enough data to estimate a mean difference between drugs 
and a mean for each subject but we do not have enough data to estimate the mixed 
(interactive) term.  If we estimate the interaction term there will be no degrees of freedom 
for the error term.   The interaction term is not a fixed effect, so we can let it drop  into 
the residual by omitting it from the model. 
 

 
The result is a new residual term (εij  = (α·S)ij +ε) that consists of a mixed and random 
term. 
 
2.  Execute analysis. 
Place data in model format:  
 Column labelled T, with response variable hours of extra sleep 
 Column labelled XD with explanatory variable,   XD  = 0 or 1 
 Column labelled XS with explanatory variable,   XS  = 0, 1...10 
  These are labels (categories), not numbers on ratio scale. 
 
Use the model to execute the analysis in a statistical package.  
    T   =  βo  + βS·XS + βD·XD + ε 
 
  

Write GLM: T = βo + βD·XD + βS·XS + βD x S·XD·XS + residual 
Components: Tijk = μ + αi + Sj + (α·S)ij + ϵijk 

GLM: T = βo + βD·XD + βS·XS + ϵ 
Mixed model Tij = μ + αi + Sj + ϵij
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2.  Execute analysis. 
 
Here are the calculations in spreadsheet 
format.  
 
The grand mean. 
   β0 = 20–1 ΣT  = 20–1 · 30.8  = 1.54 hours 
The fitted values are computed from the row 
and column means. 
 
 mean(TD=A) = 0.75 hours 

D=A = (0.75 –1.54) = –0.79 hours  
 mean(TD=B) = 2.33 hours 

D=B = (2.33 –1.54) = +0.79 hours 
  mean(TS=1) = 1.30 hours 

S=1 = (1.30 –1.54)  = –0.24 hours  
  mean(TS=2) = –0.40 hours 

S=2 = (–0.40 –1.54)  = –1.94 hours 
 
  etc. 
 
3. Evaluate the model.  
 
Structural model.   

No regression line,  so skip this evaluation. 
Error model. 

Homogeneous?  Vertical dispersion appears to 
decrease slightly from left to right.  However, 
we have little information (very few points) on 
the far right side.  
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3. Evaluate the error model. 
Error model 
Normal ?  

The residuals are normal, they closely follow the 
trend line in the normal probability plot.   

 
 
 
 
 
  
B3.  Independent?  Graph suggests some pattern of negative correlation.  There are two 
mirror image patterns of 4 dots each in the graph.  
Looking at the residuals, we see that for every value 
within Drug A, there is a value of the same magnitude 
and opposite sign within Drug B.    
 
 
 
 
 
If we plot only the residuals from Drug A, the pattern 
disappears.  We see that for factorial designs, we can 
expect patterns to appear when there are only two 
values per category.  We expect patterns such as this 
to appear when we are fitting many parameters, 
relative to the number of observations.  In this case we 
have 11 parameters for 20 observations.  
 
4.  State population and whether sample is 
representative. 
 When we draw conclusions from this sample, 
what is the population to which we are inferring ?  We are inferring only to these two 
drugs.  Drug is a fixed factor because we are interested in only these two drugs.  The 
subjects belong to a larger population, other subjects. We are inferring to this population, 
so we take Subject as a random effect. We do not know if the subjects are representative 
of all people or merely to people similar in age and medical history.  We would require a 
well executed clinical trial with randomly chosen subjects from a population with known 
characteristics (age, sex, medical history) before making strong claims about the efficacy 
of one drug relative to another.   
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4.  Partition df and SS according to model 
 

  
 Calculate likelihood ratio from SS. 
 R2 = (58.08 + 12.48) / 77.37 = 91% 1- R2 = 8.8% 
 LR = (0.088)(-20/2) = 3.6 x 109 
The research hypothesis is for more likely than a simple one-parameter model, the mean.  
There is very strong evidence for the omnibus model with two terms.  Most of the 
explained variance is due to subject.  We continue to listing of the hypothesis pair for the 
fixed term in model.   
 
5. Decide on mode of inference.  Is hypothesis testing appropriate? 
Because there is a prospect of clinical use of a drug, we will compute Type I error (use of 
an ineffective drug) by limiting Type I error to fixed value of α = 5%.   
 
6.  State HA Ho pairs, test statistic, distribution, and use of Type I error. 
Hypothesis testing will focus on the drug effect.  We are not comparing the response of 
the subjects.  The subject factor is random and so could be dropped into the residual term.  
However this inflates rather than reduces the residual mean square.  Retaining the subject 
factor in the model reduces the error term and results in a more sensitive test, one able to 
pick up smaller differences than a model lacking the subject factor. 
 Hypotheses for the drug term.   
 HA: Mean(TD=A) Mean(TD=B) The population means differ 

 H0: Mean(TD=A) = Mean(TD=B) The population means do not differ 
      These hypotheses are equivalent to  
  HA:  βD   0   
  Ho:  βD  = 0 
Are there more specific hypotheses about parameters?  No 
State test statistic    F-ratio 
Distribution of test statistic  F-distribution 
Type I error held to fixed value  α = 5% (conventional level) 
  

GLM T – βo = βS·XS + βD·XD +  ϵ 
Source Total  = Subject + Drug + Resid 
df 20 – 1 = 10 – 1 + 2 – 1 + 19–9–1 
SS  77.37     = 58.08 + 12.48  +   6.81 
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7.  ANOVA - Table Source, df, SS.  Calculate MS, F, p 
 
Here are the SS calculations in a 
spreadsheet, based on data equations.   
 
 
 
 
 
 
 
 
 
Note that t2 = 4.062 = 16.5 
 
 
 
 
 

 
 
Here are the ANOVA table 
calculations in spreadsheet form. 
 
 
 
 
 
 
We see that  F = t2 (shown above) 
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7.  ANOVA - Calculate MS, F, p 
 

Dropping the Subject term from the model, would add the SS and df to the residual.   
This increases the residual from MS = 0.756 to MS= (58.078+6.808)/(9+9) = 3.604.  This 
in turn  decreases to Fratio to F = 12.482 / 3.604 = 3.46. It increases the estimate of Type 
I error  to p = 0.079.  The test statistic no longer meets the  α = 5% criterion. The power 
of the test is decreased when the among subject variability drops into the residual.  
 
8. Recompute p-value?  
We judge that the assumptions were met. 
 
9. Report statistical conclusion. 
Random factors are not tested. For the drug effect we report the F-ratio and p-value.   
 F1,9 = 16.5  p = 0.0028 < α = 5%    
We reject Ho that the the observed difference is merely chance.  We cannot, however, say 
that the model with the drug effect is better than the null model.  To do this we would cite 
the evidence ratio LR = 3.6 x 109 times better than the Ho. 
 
10.  Report  science conclusions and interpret parameters of biological interest.  
No means are reported or compared for the subject term because it is a random factor and 
so the means are of no interest. 
 
The confidence limits for the two drug groups overlap because the among subject 
variance is not controlled statistically.  
 
     st.err  Lower CL  Upper CL 
 mean(TA)  = 0.75 hours  0.5657 –0.53 hours   2.03 hours 
 mean(TB)  = 2.33 hours  0.6332 +0.80 hours   3.06 hours 
 
Here are the confidence limits for the average difference, controlled for among subject 
variation. Note that the standard error of the difference is smaller than the standard errors 
of each group.   This is because the among subject variance has been removed. 
 
       st.err  Lower CL  Upper CL 
 mean(TB–TA)  = 1.58 hours  0.3890 0.70 hours   2.46 hours 
 
The confidence limits do not include zero; we can exclude the null hypothesis of no 
effect. 
 
We conclude that the model with the drug term is more likely than the model with no 
drug term, provided we include subject, the random factor, in the model.  

 Source df SS MS F ----> p 
   Subject 9 58.078 
   Drug 1 12.482 12.482 16.50  0.0028 
   Res     9   6.808    0.756 
   Total  19 77.368 


