
 1

Model Based Statistics in Biology.    
Part IV.  The General Linear Model.  Multiple Explanatory Variables.  
Chapter 13.2   Fixed Effects ANOVA (Interactive effects) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 on chalk board 
 
ReCap Part I (Chapters 1,2,3,4)  Quantitative reasoning is based on models, including 
statistical analysis based on models. 
ReCap Part II (Chapters 5,6,7) 
Hypothesis testing uses the logic of the null hypothesis to declare a decision. 
Estimation is concerned with the specific value of an unknown population parameter. 
ReCap (Ch 9, 10,11) The General Linear Model with a single explanatory variable. 
ReCap (Ch 12) GLM with more than one regression variable (multiple regression) 
ReCap (Ch 13) GLM with more than one categorical variable (ANOVA). 
 New concept, the interaction term. 

 
Wrap-up.  General Linear Model with two classification variables,  
 i.e. two explanatory variables on a nominal scale.   
 
We used judgement to decide whether interactive effects were important. 
When interactive effects are important, we analyze one factor within each level of 
another factor because the effects of one factor differ across the other factor.  
 
 
 
 
 
 

Today:   Two-way ANOVA.   
One response variable Y as a function of two explanatory variables X1 X2.  Both 
explanatory variables are categorical, on a nominal scale. 
Significant interaction term. 

ReCap.  Part I (Chapters 1,2,3,4), Part II (Ch 5, 6, 7) 
ReCap Part III (Ch 9, 10, 11) 
ReCap Multiple Regression (Ch 12) 
13.1  Fixed Effects ANOVA (no interactive effects) 
13.2  Fixed Effects ANOVA (interactive effects) 
13.3  Fixed*Random Effects (Paired t-test) 
13.4  Fixed*Random Effects (Randomized Block) 
13.5  Fixed*Random Effects (Repeated Measures) 
13.6  Nested Random Effects (Hierarchical ANOVA) 
13.7  Random within Fixed (Hierarchical ANOVA) 
13.8 More Than Two Factors (to be written) 

SC16_6_1.xls 
Ch13.xls 
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GLM, for a 2-way ANOVA factorial design.  Example: gains in weight (g) of male rats 
under six diets.  Data from Table 16.6.1 (p304) in Snedecor and Cochran 1989. 
 
Does weight gain depend on diet ? 
 
1. Construct model 

Data are: weight gains (grams) in rats fed 6 diets classified by source of protein 
(cereal, beef, or pork) and by level of protein (low or high). Ten rats/diet. 

 
Response variable 
 Weight gain:   ΔM in grams (ratio scale) 

 
 Explanatory variables are protein source and protein level. 

 Source:    XS = source of protein in three categories: cereal, beef, or pork  
 Level.   XL = protein level in two categories, high or low. 

 
 Both explanatory variables are on nominal scales 
 

Verbal model.   
 Weight gain depends on protein source and level. 

 
Graphical model.  
 Y-axis  = Weight gain 
 X-axis  = Low or high levels of protein 
Connect two means of each of three sources 

 
Graph suggests that growth depends on level for beef 
in pork more than for cereal. 

 
Formal Model 

 
The model has been written in two forms.  One is typical notation for the GLM, the 
other is from the tradition of experimental design (e.g. Snedecor and Cochran 1989, 
Sokal and Rohlf 1995) in which fixed factors are represented by greek letters. 
 There are three explanatory terms, one for protein source, one for protein level, and 
one for interactive effects--the dependence of level effects on source.  Graphical 
interpretation is that the relation of weight gain to protein level depends on source of 
protein. 

 
2.  Execute analysis. 

Place data in model format:  
 Column labelled M, with response variable weight gain. 
 Column labelled XS with explanatory variable,   XS  { 1, 0, 1} 
   1 = cereal,    0=beef,   1 = pork 
 Column labelled XL with explanatory variable,   XL  = 0 (low) or 1 (high) 
  These are labels (categories), not numbers on ratio scale. 

Write GLM: ΔM = βo +βS ꞏXS +βLꞏXL +βS x LꞏXSꞏXL +residual 
S&R95 Vijk = µ + αi + βj + αβij +εijk 
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2.  Execute analysis. 
 
Code model statement in statistical package according to the GLM 
   ΔM βo = βSꞏXs +βLꞏXL +βS x LꞏXS ꞏXL +ε 

 
 
 
 

The grand mean:  0 = 87.9 g 
The fitted values are the means for each of the 6 cells. 

 
 Low High 

Cereal 83.9 85.9 
Beef 79.2 100 
Pork 78.7 99.5 

These values are used to compute a residual value, one for each of 60 observations. 
 
Residuals can also be calculated from the 6 parameter estimates produced the GLM 
command.   Here are the GLM parameters produced by the SPlus statistical package. 
                    Value    Std.Error t value Pr(>|t|) 
(Intercept)  87.867 1.891 46.4654 0.000 
Level   7.2667 1.891 3.8427 0.000 
Source1   2.35  2.316 1.0147 0.315 
Source2   0.6167 1.3371 0.4612 0.647 
LevelSource1  4.7  2.316 2.0294 0.047 
LevelSource2  1.5667 1.3371 1.1716 0.247 

  
Plot residual versus fitted values. 

 
 

There are six stacks of values, one stack for 
each of six cell means (fitted values). 
 
Straight line model. 
No line fitted in model 
 
Error model.  n = 60 so only large violations 
will distort estimates. 
Homogeneous residuals? 
  No systematic change in residuals with 

increase in fitted values (i.e. no fans or cones.  
  The six stacks in the plot are similar in vertical dispersion. 

The residuals are judged homogeneous. 

MTB> ANOVA ‘M’ = ‘XS’  ‘XL’  ‘XS’*’XL’ 
MTB> GLM   ‘M’ = ‘XS’  ‘XL’  ‘XS’*’XL’ 
SUBC> fits c4; 
SUBC> res c5. 

-40
-30
-20
-10

0
10
20
30
40

75 85 95 105

Fits

R
es

id
ua

ls



 4

3.  Evaluate the model 
Error model.  
Normal residuals ?  
The residuals are skewed to the left side, too many 
large negative residual values.   
The residuals deviate from normal. 

 
 
 
 

Independent? 
 
Graph shows no evidence of upward or 
downward trend. The residuals are judged 
independent. 
 
Summary.  The residuals are 
homogeneous and independent, but they 
deviate from normal .  However, because 
n=60, we judge that parameter estimates 
and p-values will be little affected. 

 
 
5.  Partition df and SS according to model. 
Compute total degrees of freedom          dftotal = n -1 = 60 -1 = 59 
Partition dftotal according to model, using rules 
 two levels, hence 2-1 = 1 df dfL = 2 -1 = 1 
 three sources, hence 3-1 = 2 df dfS = 3 -1 = 2 
 dfL*S = dfL - dfS  dfSp*Sal  = 1 * 2 = 2 
 dfres = dftotal  - dfSp  - dfSal  - dfSp*Sal    dfres = 59 -1 -2 -2  = 54   
 
4.  Partition df and SS according to model. 
 

 
4.  Calculate LR 

 1 - R2 = Full/Reduced =  (11585.7/16198.93) = 71.5% 
 LR = (0.715)-60/2 = 23277 
The research hypothesis is far more likely than a simple one-parameter model, the 
mean.  There is very strong evidence for the omnibus model with three terms.  
Continue with analysis of individual terms  

 Y βo =  βSXS +βLXL  +βs*LXs*L  +      
 59  =  1 + 2 + 2  + 54 
   16198.93 =  266.5 + 3168.3 + 1178.2    +    11585.7 
   Full model         Reduced model 
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5.  State population and whether sample is representative. 
 The population is not enumerable (number of individuals, number of spatial units, etc), 

The population to which we infer is a large number of repetitions of the experiment 
based on the experimental protocol, including the procedural statement for 
measurement of variables.  The protein levels and sources were chosen by 
experimental design.  We will view these as fixed factors and hence infer only to these 
three sources and two levels of protein.  We assume that rats were assigned randomly 
to treatments, so that the results are representative of any other experiment with the 
same design. We will be considering a hypothetical population of repetitions of the 
experiment. 

 
5. Choose mode of inference.  Is hypothesis testing appropriate? 

Evidential inference is appropriate where the costs of Type I versus Type II error are 
unknown.  It produces a measure of evidence, not a measure of uncertainty.  We will 
use evidential inference.  We will then apply decision theoretic inference against a 
fixed Type I error, for comparison with current practice. 

 
6.  List specific hypothesis pairs.  

Analysis will focus first on the interaction term βS x LꞏXSꞏXL 
If the factors have interactive effects on the response variable, then the observed 
difference in weight gain due to one factor (protein source)  will depend on the other 
factor (protein level).  If there are significant interactive effects then the weight gains 
among the three sources cannot be interpreted unless we know the protein level. 

 
The symbol βS x L  stands for two parameters, which quantify the degree to which the 
effects of protein source on weight gain depends on level.  One parameter measures the 
change in change in weight from low to high level in beef, relative to cereal.  The second 
parameter measures the change in weight from low to high in pork, relative to beef.   
 
Hypotheses for the interaction term. 
The research hypothesis HA is that βS x L = 0 

HA:  βS x L  0 
Ho:  βS x L = 0 
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6.  List specific hypothesis pairs.  
 
Are there more specific hypotheses about the interaction term?   
  Yes.  The experimenters expected the weight gain to be greater from high to low for 

animal protein sources (beef and pork) than for cereal.   
 
If the parameter values are not zero, then there will be variance. 
The HA / Ho pairs equivalent to those listed above are: 
 HA:   Var(βS x L ) >0 or equivalently  HA: Var(βS x LꞏXSꞏXL)  >  0 
 Ho:   Var(βS x L ) = 0 or equivalently  Ho: Var(βS x LꞏXSꞏXL)  =  0 
 
If the interaction term is not significant, then research hypotheses concerning each of the 
other terms in the model become of interest because we can interpret the effects of one 
factor (e.g. protein source) regardless of the effects of the other factor (e.g. protein level). 
 
Hypotheses for the protein level term.   
Fixed effects term so the contrast in means will be of interest. 
      HA: PopMean(ΔML=low) < PopMean(ΔML=high)  The population means differ 
      Ho: PopMean(ΔML=low) = PopMean(ΔML=high)    The population means do not differ 
These hypotheses are equivalent to following HA / Ho for parameters. 
 HA:  Var(βL)  >  0  There is variance present, due to level 
 Ho:  Var(βL)  =  0  The is no variance due to level. 
Are there more specific hypotheses about parameters ?  Yes.  We might expect that 
weight gain is greater for high level than low levels of protein. 
 
Hypotheses for the protein source term.  Fixed effects term so the contrast in means will 
be of interest. 
 HA: PopMean(ΔMS=cereal) PopMean(ΔMS=beef) PopMean(ΔMS=pork) 
 HA: PopMean(ΔMS=cereal) PopMean(ΔMS=beef) PopMean(ΔMS=pork)    
  The population means differ among protein source. 
 Ho: PopMean(ΔMS=cereal) = PopMean(ΔMS=beef) = PopMean(ΔMS=pork) 
  The population means do not differ 
      These hypotheses are equivalent to  
  HA:βS   0   
  Ho:βS = 0 
 The HA / Ho pair above is equivalent to the following hypotheses. 
  HA:  Var(βS)  >  0 There is variance present, due to protein source. 
  Ho:   Var(βS)  =  0 There is no variance present, due to protein source. 
 
Additional hypotheses for parameters in the source term ?  Yes 
 HA:  ΔMcereal < ((1/2)(ΔMbeef + ΔMpork )  Growth rates for cereal less than   

those for animal sources of protein.  
 Ho:  ΔMcereal = ((1/2)(ΔMbeef + ΔMpork ) 
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6.  State test statistic, distribution, Type I error. 
Test statistic     F-ratio 
Distribution of test statistic  F-distribution 
Type I error     None for evidentialist inference. 
      5% for comparison of frequentist inference. 
 
7. ANOVA table. 
Place factors, df, SS in table. 

    
7. ANOVA table – Evidentialist. 
 Calculate LR from SS for each term in the model.  

SSresid = SSo = 
Source df SS SSreduced SSfull SSo/SSres LR Evidence 
Source 2 267 11586 11853 1.023 2.0 Inadequate 
Level 1 3168 11586 14754 1.273 1411 Very strong 
S * L 2 1178 11586 12764 1.102 18.3 Nearly adequate 
Error 54 11586 
Total 59 

 
7. ANOVA table – Frequentist with fixed Type I error. 
 Calculate MS, F, and p 
 

Source df SS MS F p  
Source 2 266.5333 133.2667 0.62 0.541132 Can’t  reject Ho 
Level 1 3168.267 3168.267 14.77 0.000322 Reject Ho 
S * L 2 1178.133 589.0667 2.75 0.073188 Can’t  reject Ho 
Error 54 11586.00 214.5556    
Total 59      

 
 

8.   Check p-value by using randomization. 
30 < n < 100, residuals homogeneous, some deviation from normal distribution of errors, 
but because the sample was large, we judge that randomization will not change the p-
value judged substantially.  We check that judgement. 
    p-value  p random      p-value/prandom 
Source   0.541  2688/5000 = 0.538  1.006 
Level    0.000322       1/5000 = 0.0002 1.56   (poor estimate) 
Source x Level  0.0732    351/5000 = 0.070  1.04 
 
Note that the p-value for Level was poorly estimated because only 5000 randomizations 
were run.  The p-value from the F-distribution was 3 in 1000 (or 15 in 5000), so our 
estimate can be no better than 1 part in 15.  If we had used 10,000 randomizations our 
estimate the p-value would improve to 1 part in 30. 
 
Our judgement that randomization would have little effect was correct. 
 

 Source df SS MS F ----> p 
   Source 2 266.5 
   Level 1 3168.3 
   Source �Level 2 1178.2 
   Res     54   11585.7  
   Total  59  16198.9 
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9.   Report statistical conclusion. 
Start with interaction term. 
p = 0.073  
 
Snedecor and Cochran (1989 p305) comment as 
follows. 
“In factorial designs “it often happens that a few 
comparisons comprising the main effects have 
substantial interactions, while the majority of the 
comparisons have negligible interactions.  
Consequently, the F-test of the AB interaction sum 
of squares as a whole is not a good guide as to 
whether interactions can be ignored.  It is wise to 
look over the two-way table of treatment totals or 
means before concluding that there are no 
interactions, particularly if the F is larger than 1.” 
 
Here is the table of cell means and marginal 
means, followed by table of contrasts with the 
grand mean, and table of contrasts from high to 
low in each source of protein.  To examine the 
interactive effects, we subtract the grand mean from each cell mean.  Then we subtract 
the marginal means from each cell.   
 
9. Declare decision about terms. 
The contrast from low to high in cereal (6.267 g) is twice the magnitude of the contrast in 
beef and pork (3.133) and opposite in sign.  The contrast is 6.3/85 = 7% of the mean.  
There at best limited evidence (LR = 18) for a minor degree of interactive effect.  
 
Following the advice of Snedeor and Cochran (1989) we use judgement to temper our 
conclusion about the presence of an interactive effect.   
Instead of ignoring the interaction term because the p-value was just short of statistical 
significance at the 5% level, we report the contrasts in addition to the means for each 
fixed factor.      
  
Interactive effects mean that we cannot interpret one main effect independently of the 
other.  To interpret the results in light the possibility of interactive effects we break down 
the two-way table by comparing means across one factor within in each level of the other 
factor.  We can examine the differences from low to high within each level of protein 
source, as in the table above.  Alternatively, we could examine the differences across 
sources within each of the two levels.   
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10.  Report  science conclusion.  

We judge that interactive effects cannot be ignored in this experiment.   We report 
contrasts across one factor (protein level) in each class of the other factor (protein 
source).    

 
 The results of this experiment are conveniently summarized as differences of means 

within each protein source, along with confidence limits on the difference. 
 

    SS MS=    
 Low High Diff Low High Sum(SS)/18 sterr Lower Upper 

cereal 83.9 85.9 2.00 2220.9 2030.9 236.2 3.437 -5.22 9.22 
beef 79.2 100.0 20.80 1735.6 2062.0 211.0 3.248 13.98 27.62 
pork 78.7 99.5 20.80 2464.1 1072.5 196.5 3.134 14.22 27.38 

 
The confidence limits for cereal include zero (no difference in growth at low and high 
levels of protein).  The confidence limits for beef and pork exclude zero (exclude no 
growth).  These results are consistent with the graphical display of the means, which  
suggested that growth depends on level for beef and pork more than for cereal. 
 
The coefficients reported by the statistical package lead to a similar conclusion.  Here are 
the results from the Minitab package, which match those shown earlier from SPlus. 
 
Term              Coef   SE Coef        T      P 

Constant        87.867     1.891    46.47  0.000      0 
Level 
0               -7.267     1.891    -3.84  0.000 beef  = 0 
Source 

-1              -2.967     2.674    -1.11  0.272 cereal = 1 
 0               1.733     2.674     0.65  0.520 beef  = 0 
Level*Source 

0     -1         6.267     2.674     2.34  0.023 cereal = 1 
0      0        -3.133     2.674    -1.17  0.246 beef = 0 
 
The contrast from low to high level in cereal (6.267 g) is twice the magnitude of the 
contrast in beef and pork (3.133) and opposite in sign.  The contrast for cereal differs 
significantly from the other two (p = 0.023 < α = 5%). 
 
 


