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Model Based Statistics in Biology.    

Part IV.  The General Linear Model.  Multiple Explanatory Variables. 

Chapter 13.1   Fixed Effects ANOVA (no interactive effects) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 on chalk board 

 

 

ReCap Part I (Chapters 1,2,3,4)  Quantitative reasoning is based on models, including 

statistical analysis based on models. 

ReCap Part II (Chapters 5,6,7) 

ReCap (Ch 9, 10,11) The General Linear Model with a single explanatory variable. 

ReCap (Ch 12) GLM with more than one regression variable (multiple regression) 

 

Wrap-up.  General Linear Model with two classification variables,  

 i.e. two explanatory variables on a nominal scale.   

 

New concept, the interaction term. 
 

 

 

GLM, applied to 2-way ANOVA in Sokal and Rohlf 1995 p332. 

Today:   Two-way ANOVA.   

One response variable Y as a function of two explanatory variables X1 X2.  Both 

explanatory variables are categorical, on a nominal scale. 

ReCap.  Part I (Chapters 1,2,3,4), Part II (Ch 5, 6, 7) 

ReCap Part III (Ch 9, 10, 11) 

ReCap Multiple Regression (Ch 12) 

13.1  Fixed Effects ANOVA (no interactive effects) 

13.2  Fixed Effects ANOVA (interactive effects) 

13.3  Fixed*Random Effects (Paired t-test) 

13.4  Fixed*Random Effects (Randomized Block) 

13.5  Fixed*Random Effects (Repeated Measures) 

13.6  Nested Random Effects (Hierarchical ANOVA) 

13.7  Random within Fixed (Hierarchical ANOVA) 

13.8 More Than Two Factors (to be written) 

Ch13.xls 

Limpet Respiration 
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Background. 

The intertidal zone shows clear patterns of vertical zonation.  The accessibility of this 

habitat has resulted in a long history of field experimentation combined with laboratory 

studies.  Here is an example of a laboratory study based on an observed pattern of 

abundance of two intertidal species.  The  data are from Box 11.2 in the Sokal and Rohlf 

(2012) textbook Biometry. 

"As an undergraduate in an animal physiology course I thought it might be interesting to 

compare O2 consumption in animals from a rocky intertidal area and a quiet area with a 

bay. The data in Biometry was an experiment to see if differences in O2 consumption in 

more brackish water that the bay limpet might tolerate better."  F.J. Rohlf (April 2017). 
 
The bay limpet is A digitalis. Table 1 in Davis et al (2002) lists both Colisella (now 

Lottia) scabra and Collisella digitalis in San Diego Bay. 

"Of taxa found both in the bay and on the open coast, five (Littorina snails, the limpet 

Collisella scabra, the brown alga Egregia menziesii, non-coralline red algae, and total 

seagrass) were significantly more abundant on the open coast than in the bay (ANOVA 

P<0.05)." 

J.L.D. Davis, L.A. Levin, S.M. Walther.  2002.  Artificial armored shorelines: sites for 

open‐coast species in a southern California bay.  Marine Biology 140: 1249–1262 

DOI 10.1007/s00227‐002‐0779‐8 
 
1. Construct model 

Data are: oxygen consumption (microliters per minute) / (mg dry weight) of two 

species of limpet, at three different salinities. 
 

Response variable 

Oxygen consumption. VO2 = µl O2 min
−1

 mg
−1

 dry weight (ratio scale) 
 

Explanatory variables are species and salinity levels. 

Species.    Xsp = A.scabra, A.digitalis  (two categories, nominal scale) 
 

Salinity.   Xsal = salinity in three categories: 100%, 75%, 50% 

This quantity was measured on a ratio scale, but it is here reduced to nominal 

scale, of three categories. 
 

Here is a table of variables. 
Variable Response or Categorical Crossed or 

Name Symbol Units Scale Explanatory or Covariate Nested 

Limpet respiration V02  µl O2 min
-1

 mg
-1

 ratio response    N/A N/A 

Species XSp 2 species nominal explanatory categorical N/A 

Salinity XSal  3 categories nominal explanatory categorical N/A 

Sp by Salinity XSP ₓ XSal  2 by 3 categories nominal explanatory categorical crossed 
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1. Construct model 
 

Verbal model.  Oxygen consumption depends on salinity and species 
 

Graphical model:  

Connect 3 means of each of two species. 

 X-axis  =   Species. 

 Y-axis  =  O2 consumption, from 0 to 14 

 Means: A. scabra   12.17  7.89  10.56 

   A. digitalis 12.33  7.35  7.43 
 
Plot suggests that effect of salinity on O2 

consumption depends on species of limpet.  
 
 

Formal Model.  Write the GLM 

 
The model has been written using two forms of notation.  One shows variables with 

population parameters.  The other shows statistical notation where greek letters stand 

for fixed effects and subscripts track categories within a variable.  The symbols in each 

of the two sets of notation have been aligned, to facilitate translation.   

  There are three explanatory terms, one for salinity, one for species, and one for 

interactive effects--the dependence of salinity effects on species.  Graphical 

interpretation is that the shape of the relation of O2 consumption to salinity in one 

species does not match the shape of the same relation in the other species.  The 

interaction plot, using the means, suggests there is an interactive effect.  
  

2.  Execute analysis. 
Place data in model format:  

 Column with response variable oxygen consumption, labelled VO2 

 Column with explanatory variable, labelled Xsp  (As or Ad) 

 Column with explanatory variable, labelled Xsal (50, 75, 100) 

  These are labels (categories), not numbers on ratio scale. 
   
Code model statement in statistical package according to the GLM 

 
    VO2 = βo  + βsp⋅Xsp + βsal⋅Xsal + βsp x sal⋅Xsp⋅Xsal + ε 

 

 

 

 

 

 

GLM: VO2 = βo + βsp⋅Xsp + βsal⋅Xsal + βsp x sal⋅Xsp Xsal + ε 

 Vijk =  µ  + αi  +      βj  +       αβij  + εijk 

MTB> ANOVA ‘VO2’ = ‘Xsp’  ‘Xsal’  ‘Xsp’*’Xsal’ 
MTB> GLM   ‘VO2’ = ‘Xsp’  ‘Xsal’  ‘Xsp’*’Xsal’ 
SUBC> fits c4; 
SUBC> res c5. 
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2.  Execute analysis. 
 

Here are GLM parameters produced by a statistical package (SPlus) 
                 Value Std. Error     t value  

(Intercept)  9.6195833  0.4462817  21.5549605   Grand mean 
         SP -0.5887500  0.4462817  -1.3192342 
       Sal1 -2.3181250  0.5465812  -4.2411359 
       Sal2 -0.3122917  0.3155688  -0.9896152 
     SPSal1 -0.1762500  0.5465812  -0.3224590 
     SPSal2 -0.4887500  0.3155688  -1.5487907 

 
The grand mean (intercept):  βo  = 48

−1
 ΣV = 48

−1
 ⋅ 461.74  = 9.62 µl min

−1
 mg

−1
 

The GLM parameters are contrasts relative to the intercept (grand mean). 

The fitted values are the means for each level of each factor. 

They can be calculated directly or from the parameters (intercept and contrasts). 
 

Mean(sp=As) =  24
−1

 ΣVsp=As  =  24
−1

 ⋅245  =  10.21 µl min
−1

 mg
−1

 

 9.62 + 0.59 =  10.21    (from parameters) 

Mean(sp=Ad) =  24
−1

 ΣVsp=Ad  =  24
−1

 ⋅ 216.74  =  9.03 µl min
−1

 mg
−1

 

 9.62 - 0.59 =  9.03 

Mean(Vsal=50) = 16
−1

 ΣVsal =50  = 16
−1

 ⋅196  = 12.25 µl min
−1

 mg
−1

 
 9.62 + 2.32 + 0.31 =  12.25 

Mean(Vsal=75) =  16
−1

 ΣVsal=75  =  16
−1

 ⋅121.82  =  7.61 µl min
−1

 mg
−1

 
 9.62 - 2.32 + 0.31 =  7.61 

Mean(Vsal=100) =  16
−1

 ΣVsal=100  =  16
−1

 ⋅143.92  = 9.00 µl min
−1

 mg
−1

 
 9.62 - 0.312 + 0.316 =  9.00 

 
3. Evaluate the model.  
Plot residuals versus fits (cell means). 

 
Straight line assumption.  No line fitted in model, so skip this evaluation. 

 MTB > plot 'res' 'fits' 
   res   -                             
                        * 
         -                                     * 
      5.0+          *                                           * 
         -    ** 
         -    22    *                          2 
         -                                                     *2 
         -          *                                           * 
      0.0+                                                     ** 
         -    *2    2                          *               2 
         -    32    *                          2               3* 
         -    *     2                          *                * 
         -     *                               * 
     -5.0+ 
         -                                                      * 
         - 
         - 
           +---------+---------+---------+---------+---------+------fits     
         7.0       8.0       9.0      10.0      11.0      12.0 
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3. Evaluate the model.  
 
Normal error model.  Homogeneous errors?   

 No systematic change in residuals with increase in fitted values (i.e. no cones)  so 

residual homogeneous. 

  Note there are only 6 fitted values, so the residual versus fit plot will consist of only 6 

stacks of points.  The stacks should be similar in vertical dispersion.  
 

 
Normal errors?  The response variable deviates from normality, it is skewed by a few 

large values.  The response variable and the residuals are clearly bimodal.  

“O2 rate fluctuated over time seeming to reflect a memory of the tidal cycle but faded 

after a few days….The bimodality might reflect differences in time of day as I could 

not run the Warberg machine to measure O2 for all of the specimens at the same time.”  

F.J.Rohlf 2017.    

 

 

 

 

 

Will this distort the estimate assuming a normal distribution?  As a rule of thumb, 

distortion diminishes above n = 30.    In this analysis, n>30 but the residuals deviate 

substantially from normality so we will compare the estimates of Type I error from the F-

distribution to the estimates by randomization. 
 
Sum(res) = 0?  Yes 

One of the assumptions for the GLM is that the fitted and residuals values are 

not associated.  In mathematical terms: 

 Y  =  Model  +  Res 

 Var(Y) = Var(Model  +  Res) 

 Var(Y) = Var(Model)  +  Var(Res)  +  Cov(Model,Res) 

If Cov(Model,Res)  =  0, then we can partition Var(Y) 

 Var(Y)  =  Var(Model) + Var(Res) 

If Cov(Model,Res)  ≠  0,  then partitioning of Var(Y) cannot be trusted. 

 MTB > hist 'res' 

 Histogram of res   N = 48  

 Midpoint   Count 

       -6       1  * 

       -5       0 

       -4       2  ** 

       -3       5  ***** 

       -2      12  ************ 

       -1       8  ******** 

        0       2  ** 

        1       2  ** 

        2       3  *** 

        3       7  ******* 

        4       2  ** 

        5       2  ** 

        6       1  * 

        7       1  * 

 MTB > hist 'oxy'  

 Histogram of oxy   N = 48 

 Midpoint   Count 

        4       3  *** 

        6      12  ************ 

        8       6  ****** 

       10      11  *********** 

       12       6  ****** 

       14       7  ******* 

       16       1  * 
       18       2  ** 
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3. Evaluate the model. 
Independent residuals?  The order in which the specimens were run in the device to 

measure respiration is a potential source of non-independence.  We have no information 

on the order.  The lag plot for residuals in the order in which the data were presented 

show no pattern of association.  The residuals were taken as independent. 
 

 
 
4.  Partition df and SS according to the model. 

Compute total degrees of freedom          dftotal = n -1 = 48 -1 = 47 

Partition dftotal according to model, using rules 

 two species, hence 2-1 = 1 df        dfSp = 2 -1 = 1 

 three salinities, hence 3-1 = 2 df      dfSal = 3 -1 = 2 

 dfSp*Sal = dfSp x dfSal              dfSp*Sal  = 1 x 2 = 2 

 dfres = dftotal  - dfSp  - dfSal  - dfSp xSal    dftotal = 47 -1 -2 -2  = 42 

 

 
Many packages have both GLM and ANOVA routines.  These partition the variance 

according to the model (a two-way ANOVA for the limpet data).  ANOVA routines 

require equal replication, as in the limpet example: 8 observations in each of 6 cells.  

GLM routines are more flexible, they allow unequal replication within the cells. 
 

MTB > let c8 = lag('res') 
 MTB > plot c8 'res' 
 C8      - 
         -                 * 
         -                       * 
      5.0+                           * * 
         -                 *  * 
         -                *  ***  *                   *    * 
         -                  *    *            * 
         -                                    ** 
      0.0+                      * 
         -             *  ** * * *  *          * 
         -                * * * * *            2   *   *  2     * 
         -   *        *   *       *            * 
         -                                       2 
     -5.0+ 
         -                               * 
         - 
         - 
           ------+---------+---------+---------+---------+---------+res     
              -5.0      -2.5       0.0       2.5       5.0       7.5 
         N* = 1 

 Y = βo + βspXsp + βsalXsal + βsp*salXsp*sal +  ε 

   47 =   1 + 2 + 2 + 42 

 623.41 =  16.64 + 181.32 + 23.93 + 401.52 
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4.  Calculate LR from the unexplained variance 1-R
2
 

 1 - R
2
 = (401.52/623.41) = 64.3% 

 LR = (0.644)
-48/2

 = 38512 

The research hypothesis is for more likely than a simple one-parameter model, the 

mean.  There is very strong evidence for the omnibus model with three terms.  

We continue to a listing of hypothesis pairs for each term in model.  

  

5.  Define target of inference and whether the sample is representative. 
When we draw conclusions from this sample, what is the population to which we are 

inferring?  The population in this case is defined by a repeatable measurement 

protocol.  The population parameters are those from averaging over thousands of 

hypothetical repetitions of the experiment.  Inference is only to those salinities listed in 

the  experimental protocol. Inference is only to the two species in the protocol.  We 

will not infer to other limpet species.   
 

We are not inferring to an enumerable population, such as all limpets at the sites where 

the limpets were collected.  We will assume that once the limpets were collected they 

were assigned randomly, or at least haphazardly, to one of the three salinities.  
 

“I am not sure how randomly the specimens were selected but at that point I had 

not yet had a statistics course.”  F.J. Rohlf 2017. 
 
5. Choose  mode of inference.  
We have several choices. 

-Evidential inference (Edwards 1972, Royall 1997),  

-Fiducial probability (Fisher 1935) 

-Priorist (Bayesian) inference (also called inverse probability),  

-Frequentist inference using Fisher sorting or decision theoretic hypothesis testing 

(Neyman and Pearson 1933).  

 Fiducial probability (inverse probability without a prior probability) has not had a history 

of success.  Priorist (Bayesian) inference requires a prior probability.  Decision theoretic 

inference requires specification of a fixed Type I and Type II error, preferably based on 

relative costs of both types of error.  Current texts and practice rely on fixed Type I error, 

with specification of Type II error in the case of prospective power analysis in 

experimental design. Decision theoretic inference produces a measure of uncertainty,  it 

is not a measure of evidence (Royall 1997).  Evidential inference is appropriate in the 

absence of a reason to control Type I error.  We will estimate Type I error for comparison 

to the evidentialist conclusions. 
 
6.  State test statistic, its distribution, and usage of Type I error. 
 Test statistic    F-ratio 

 Distribution of test statistic F-distribution 

 Type I error    Fisher sorting into high, moderate, and low. 
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6.  List hypothesis pairs.   

We focus first on the interaction term βsp x sal @Xsp @Xsal. If the factors have interactive 

effects on the response variable, then the observed difference in O2 uptake due to one 

factor (between the two groups of animal) will depend on the other factor (salinity).  If 

there are significant interactive effects then the differences in salinity cannot be 

interpreted unless we know the species.  

The symbol βsp x sal stands for two parameters that together quantify the degree to 

which the effects of salinity on respiration depends on species.  These two parameters 

are contrasts (differences). 
 

D50%  =  Mean(Vsal=50, sp=Ad)  − Mean(Vsal=50, sp=As) = 12.326  −  12.174  = 0.152 

D75%  =  Mean(Vsal=75, sp=Ad) − Mean(Vsal=75, sp=As) = 7.338  −  7.890  =  −  0.552 

D100%  =  Mean(Vsal=100, sp=Ad) − Mean(Vsal=100, sp=As) = 7.429  −  10.561  = −3.132 
 

D75%  − D50%  = 0.152 −  0.552 = 0.704  Difference is small 

D100% − D50%  = 0.152 −  3.032 = 3.284  Difference is large  

 The contrast at 100% exceeds that at 75%  
 

Hypotheses for the interaction term.  The research hypothesis HA is that βsp x sal ≠ 0 

 HA:   βsp x sal ≠ 0  

Ho:    βsp x sal = 0 
 

Are there more specific hypotheses about the interaction term?   

  No, because we have no information on which to base directional hypotheses. 
 

If the parameter values are not zero,  then there will be variance due to that term. 

The HA / Ho pairs equivalent to those listed above are: 

 HA:   Var(  βsp x sal ) >0 or equivalently  HA: Var(βsp x sal⋅Xsp⋅Xsal)  >  0 

 Ho:   Var(  βsp x sal ) = 0 or equivalently  Ho: Var(βsp x sal⋅Xsp⋅Xsal) =  0  
 

If the interaction term is not significant, then research hypotheses concerning each of 

the other terms in the model become of interest because we can interpret the effects of 

on factor (such as salinity) regardless of the effects of the other factor (species). 
 

Hypotheses for the species term.  

 HA: µsp=As  ≠ µsp=Ad  The population means differ 

 Ho: µsp=As  = µsp=Ad  The population means do not differ 

      These hypotheses are equivalent to  

 HA:  βSp=Ad  ≠ 0   

 Ho:  βSp=Ad = 0  

They are also equivalent to following HA / Ho for parameters. 

  HA:  Var(βsp)  >  0  There is variance present, due to species 

  Ho:  Var(βsp)  =  0  The is no variance due to species. 

Are there more specific hypotheses about parameters ?  No 
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6.  List specific hypothesis pairs. 
Hypotheses for the salinity term.   

This is a fixed effects term so the contrast in means will be of interest. 

 HA: µSal=50% ≠ µSal=75% ≠ µSal=100%    

  The population means differ among salinities. 

 HA: µSal=50% = µSal=75% = µSal=100%    

  The population means do not differ 

      These hypotheses are equivalent to  

  HA:  βSal  ≠ 0   

  Ho:  βSal = 0 

 The HA Ho pair above is equivalent to the following hypotheses. 

  HA:  Var(βsal)  >  0  There is variance present, due to salinity. 

  Ho: Var(βsal)  =  0 There is no variance present, due to salinity. 
 

Additional hypotheses for parameters in the source term ?  Yes 

 HA: µ100% ≠ (1/2)( µ75% + µ50%) Means at reduced salinity differ from unreduced.  

 Ho: µ100% = (1/2)( µ75% + µ50%) 
 
7.  ANOVA.  Table Source, df, SS.  
Transfer df and SS components from table (horizontal listing of the model) to the 

ANOVA table, which lists the model vertically.    Start with SStot at bottom, then add 

partitioned components SSsp SSsal SSsp x sal SSres  

 

 

 Source df SS  

   Sp 1 16.64 

   Sal 2 181.32 

   Sp@Sal 2 23.93 

   Res     42   401.52  

   Total  47 623.41 
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7.  ANOVA – Evidentialist.  Calculate LR from SS 
Calculate SSo = SS + SSresid     Calculate SSo / SSres   Calculate LR = (SSo / SSres)

n/2
 

SSresid SSo 

Source df SS SSreduced SSfull SSo/SSres LR Evidence 

sp 1 16.64 401.52 418.16 1.041 1 Inadequate 

sal 2 181.32 401.52 582.84 1.452 24 Some 

sp*sal 2 23.93 401.52 425.45 1.060 2 Inadequate 

Residual 42 401.52 

Total 47 623.41 
 
Compute LR from SS for each term in the model 

LRsp  =  [(SSsp + SSres ) / SSres ]
48/2

 = [(16.64+401.52) / 401.52]
 48/2

 = 1.41 

LRsal  =  [(SSsal + SSres ) / SSres ]
48/2

 =  [( (181.32+401.52)  / 401.52/]
 48/2

 = 23.7 

LRspXsal  =  [(SSspXsal + SSres ) / SSres ]
48/2

 =  [(23.93+401.52)  /  401.52]
 48/2

 = 1.64 
 
There is inadequate evidence for an interactive effect, LR < 20 

There is some evidence for a salinity effect, LR > 20 

There is inadequate evidence for a species effect, LR < 20 
 
7.  ANOVA – Frequentist.  Calculate MS, F, p  

 
Compute MS 
MSSp  =  SSSp / dfSp   = 16.64 

MSSal  =  SSSal / dfSal  = 90.661 

MSSp * Sal  =  SSSp * Sal / dfsp x sal  = 11.963 

MSres =  SSres / dfres   = 9.56 
 
Compute F 

Fixed effects for salinity and species, so all variance ratios taken relative to MSres   

F  =  MSsp / MSres  =  16.638 / 9.56  =  1.74 

F  =  MSsal / MSres  =  90.661 / 9.56  =  9.48 

F  =  MSsp x sal / MSres  =  11.963 / 9.56  =  1.2 
 
Calculate Type I error from F-distribution.  
F2,42  =  1.251  p  =  0.297  interaction 

F1,42  =  1.74    p  =  0.194  species effect 

F2,42  =  9.483  p =  0.0004  salinity effect 
 
Statistical packages automatically partition df and SS, compute MS, compute F, compute 

p-value from F-statistic, and produce ANOVA table.  
 

Source df SS adj MS F p 

sp 1 16.64 16.64 1.74 0.1942 

sal 2 181.32 90.66 9.48 0.00 

sp*sal 2 23.93 11.965 1.25 0.297 

Residual 42 401.52 9.6 

Total 47 623.41 

Draw picture of 

computational flow. 
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8.   Decide whether to recompute Type I error. 
 

The residuals were strongly bimodal, not normal. 

n > 30 and so we judge that the Type I error rate from the F distribution will be 

approximately correct. We will check our judgement by computing the randomized p-

value. To do this, we set up a control file and generate distributions based on a 

thousand randomizations. 
 
Here are the results from 1000 random samples of the response variable.  
 
F2,42  =  1.251 p  = 386/1000  =  0.39 interaction term 

F1,42  =  1.74   p  = 250/1000 = 0.25 species effect 

F2,42  =  9.483 p = 1/1000 = 0.001  salinity effect 
 
How much did the p-values change? 

 interaction  F = 1.25 pran = 0.39   pcdf = 0.297 0.39 / 0.297 = 1.3 

 species  F = 1.74  pran = 0.25  pcdf = 0.19 0.25 / 0.19 = 1.3 

 salinity  F = 9.48  pran < 0.001  (poor estimate, only 1000 

randomizations) 

9.  Report statistical conclusion about terms in the model. 
Start with interaction term. 

There was inadequate evidence for an interactive effect, LR < 20 

There was some evidence for a salinity effect, LR > 20 

There was inadequate evidence for a species effect, LR < 20 
 

Type I error was high for the interactive effect  p = 0.39   

We cannot reject the null hypothesis of not effect.   
 
We proceed to main effects. 

  The next chapter shows an example where interactive effects are present, and we 

do not interpret the main effects in the 2 way analysis.   
 

Remove interaction term if not significant ?  This question arises in the context of a 

fixed tolerance for Type I error.  In this example there is little to gain by doing this. 

Only a single degree of freedom moves to the residual term, with little effect on 

statistical power. 
 
Species term.  

A species effect was no more likely than no species effect. 

We cannot dismiss the null hypothesis, not species effect. 
 
Salinity term. 

A salinity  effect was more likely than no salinity effect. 

We can dismiss the null hypothesis, no salinity effect. 
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10.  Report and interpret parameters of biological interest.  
 
There was some evidence that both species responded to reduce salinity.  

At this point we could do planned comparisons .   

A logical set of comparisons would be 100% versus 70% then 100% versus 50%.  

We can undertake two comparisons.   

Equivalently, we can examine the means and standard errors because as an 

approximation, two means differ significantly if the difference is greater than two 

standard errors. 
 
   sal=50  =  12.25 µl min

-1
 mg

-1
 st.err = 0.800  µl min

-1
 mg

-1
 

   sal=75  =  7.61 µl min
-1

 mg
-1

 st.err = 0.669  µl min
-1

 mg
-1

 

   sal=100  =  8.99 µl min
-1

 mg
-1

 st.err = 0.868  µl min
-1

 mg
-1

 
 
We can see that reduction to 50% salinity increased respiration, while reduction to 

75% did not. We can draw this conclusion from inspection of the means and standard 

errors.  
 
100% versus 75% The difference is 8.99 - 7.61 = 1.38 µl min

-1
 mg

-1
. 

 Two standard errors are 0.669 + 0.868 = 1.54 µl min
-1

 mg
-1

. 

 The observed difference is less than two standard errors. 

100% versus 50% The difference is 8.99 -12.25 = -3.26 µl min
-1

 mg
-1

. 

 Two standard errors are 0.669 + 0.800 = 1.47 µl min
-1

 mg
-1

. 

 The difference is greater than two standard errors. 
 
This is an approximation, not an exact calculation, but it is quick and easy. 
 
The result was surprising, compared to the expected increase in respiration with 

decrease in salinity.   
 
The unexpected results together with the observed persistence of variation in O2 rate 

following the tides suggest that the experiment be repeated to control for retained tidal 

variation in the open coast species, L scabra 

* * * 

Edwards, A.W.F. 1972.  Likelihood.  Cambridge University Press. 
 

Fisher, R. A. 1935. The fiducial argument in statistical inference. Annals of Eugenics 5: 

391–398) 
 

Neyman, J. Pearson, E.S. 1933. On the problem of the most efficient tests of statistical 

hypotheses. Philosophical Transactions of the Royal Society A. 231:289–337 
 

Royall, R. 1997.  Statistical Evidence.  Chapman and Hall
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Appended material. 

2.  Execute analysis. – Fitted values. 

The fitted values are the means for each of the 6 cells (sums/n in each cell) 

 Mean(Vsal=50, sp=As) = 8
−1

 ΣV(sal=50, sp=As)  = 8
−1

 @ 97.39  = 12.17 µl min
−1

 mg
−1

 
 A.scabra A.digitalis  Sums   

50% 97.39 98.61  196.00   

75% 63.12 58.70  121.82   

100% 84.49 59.43  143.92   
       

Sums 245.00 216.74  461.74   

       

 A.scabra A.digitalis  Means   

50% 12.17 12.33  12.25   

75% 7.89 7.34  7.61   

100% 10.56 7.43  9.00   
       

Means 10.21 9.03  9.62 =βo  

       

 A.scabra A.digitalis  Means−βo βsal  

50% 2.55 2.71  2.63   

75% -1.73 -2.28  -2.01 -2.3181  =(Mean@100%-βo)+(Mean@75%-βo) 

100% 0.94 -2.19  -0.62 -0.3123  =(Mean@100%-βo)/2 

       

Means−βo 0.59 -0.59     

  βsp     

       

 A.scabra A.digitalis  Means−Σβ  βsal*Sp  

50% -0.665 0.665  0.00   

75% -0.313 0.313   -0.1762  =(Mean@100%−Σβ)+(Mean@75%−Σβ) 
100% 0.977 -0.977   -0.4887  =(Mean@100%-Σβ)/2 

       

Means - Σβ 0.00 0.00     

Here are the adjusted means. 

 Mean(sal=50) - 0 = 12.25  - 9.62 = 2.63 µl min
-1

 mg
-1

 

 Mean(sal=75) - 0  = 7.61  - 9.62 = -2.01 µl min
-1

 mg
-1

 

 Mean(sal=100) - 0  = 9.00  - 9.62 = -0.62 µl min
-1

 mg
-1

 

 Mean(sp=As)  - 0  = 10.21 - 9.62 = 0.589 µl min
-1

 mg
-1

 

 Mean(sp=Ad)  - 0  =  9.03  - 9.62 = -0.589 µl min
-1

 mg
-1

 

 AdjMean(sal=75, Sp=Ad) = Mean(sal=75, Sp=Ad) - 0  - Mean(sal=75)-Mean(sp=Ad) 

   = 7.34 - 9.62 (7.61 - 9.62) - ( 9.03 - 9.62) = 3.13 µl min
-1

 mg
-1

 

 AdjMean(sal=100, Sp=Ad) = Mean(sal=100, Sp=Ad) - 0  -Mean(sal=100)-Mean(sp=Ad) 

   = 7.43 - 9.62 - (9.00 - 9.62) - ( 9.03 - 9.62) = -0.977 µl min
-1

 mg
-1
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The GLM  parameters are linear combinations of adjusted means. 

  sal=100  = (Mean(Vsal=75) - 0 ) + (Mean(Vsal=100) - 0 )/2   

    =  -2.01 -0.62 / 2 = -2.31 µl min
-1

 mg
-1

 

  sal=75  = (Mean(Vsal=100) - 0 )/2 =  -3.26 µl min
-1

 mg
-1

 

  Sp=Ad  = Mean(Vsp=Ad)  - 0  = -0.589 µl min
-1

 mg
-1

 

  Ad*100 = AdjMean(Vsal=100,Sp=Ad)/2 = -0.977/2 = -0.489 min
-1

 mg
-1

 

 Ad*75 = AdjMean(Vsal=75, Sp=Ad) +  AdjMean(sal=100,Sp=Ad)/2 

  = 3.13 - 0.489 = -0.176 µl min
-1

 mg
-1

 

 

8.   Recompute Type I error by randomization. 
Minitab code  

 sample 48 'oxy' c7 
unstack c7 c31 c32 c33; 
subscripts 'sal'. 
let k31 = mean(c31) 
let k32 = mean(c32) 
let k33 = mean(c33) 
set c8  
(k31 k32 k33)16 
end 
unstack c7 c34 c35; 
subscripts 'sp'. 
let k34 = mean(c34) 
let k35 = mean(c35) 
set c9  
(k34 k35)24 
end 
let k1 = stdev(c7)*stdev(c7)*47 
let k2 = stdev('sp')*stdev('sp')*47 
let k3 = stdev('sal')*stdev('sal')*47 
let k4 = stdev('fits')*stdev('fits')*47 
let k5 = stdev('res')*stdev('res')*47 
let k8 = stdev(c8)*stdev(c8)*47 
let k9 = stdev(c9)*stdev(c9)*47 
let k10 = k4 - k8 - k9 
let k15 = (k8/k5)*(42/2)                 # F sal 
let k16 = (k9/k5)*(42/1)                 # F sp 
let k17 = (k10/k5)*(42/2)                # F sal*sp 
stack c15 k15 c15 
stack c16 k16 c16 
stack c17 k17 c17 


