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Model Based Statistics in Biology.    
Part IV.  The General Linear Model. Multiple Explanatory Variables. 
Chapter 12.1 Multiple Regression.  Two Explanatory Variables. 
 
 
 
 
 
 
 
 
 
 
 on chalk board 
 
ReCap Part I (Chapters 1,2,3,4)  Quantitative reasoning based on models. 
ReCap Part II (Chapters 5,6,7) 
Data Equation 
Frequency distributions 
Three modes of inference. 
ReCap (Ch 9, 10,11) The General Linear Model with a single explanatory variable. 
 Unifying concepts rather than list of statistical tests. 

  GLM is more useful and flexible than a collection of special cases. 

Wrap-up. 
 
Multiple regression is a special case of the General Linear Model in which there are two 
or more explanatory variables on a ratio scale. 
 
The regression coefficients estimated by most statistical packages are partial regressions.  
They express the rate of change in the response variable with respect to change in the 
explanatory variable, controlling for other variables. 
 
The sum of squares that correspond to these partial regression coefficients are the 
adjusted (Type III) sum of squares.  In most situations these are tested, rather than the 
sequential (Type I) sum of squares. 
 
Regression coefficients express the rate of change of one variable with respect to another.  
Because of this relative quality, estimates can often be inferred to far larger populations 
than can means. 

Today: Introduction to GLM, Multiple Explanatory Variable.  
 Distinction among Multiple regression, Multiway ANOVA, ANCOVA 
 Example: Multiple Regression 

ReCap.  Part I (Chapters 1,2,3,4) 
ReCap Part II (Ch 5, 6, 7) 
ReCap Part III (Ch 9, 10, 11) 
12  Multiple Regression.  Introduction 
12.1  Two Explanatory Variables 
12.2  Three Explanatory Variables 
13  GLM multiway ANOVA 
14  GLM ANCOVA 
15 Review - GLM with multiple explanatory variables. 
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Introduction  Analysis of data from Snedecor and Cochrane 1980 Table 17.2.1 
  Does phosphorus content of corn  (ppm) from 17 Iowa soils at 20 deg C depend on 

inorganic and organic phosphorus in the soil? 
 

1. Construct model 
Verbal model. Plant available phosphorus depends on the amount of 

both organic and inorganic soil phosphorus. 
Response variable is phosphorus content of corn.   Pcorn = ppm 
Explanatory variables is organic phosphorus in soil.   oP  =  ppm  
Explanatory variables is inorganic phosphorus in soil.  ioP  =  ppm 
All variables are on a ratio type of scale. 
Graphical model.   

 
<---Pcorn versus oP 

 
Cloud of points.  

No clear trend  
to describe as a line 

 
Pcorn  vs ioP 

 

A line can be fit through the points - - > 
Then fit two perpendicular lines 

 
 
 
 
 
 
 
 
 
 

Formal model .  We begin with one explanatory variable ioP 

 
The parameter βioP stands for rate of change in phosphorus content of corn, with respect 
to rate of change of inorganic phosphorus.  It is represented as a line through the cloud of 
points in a graph of Pcorn versus inorganic phosphorus. 
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GLM: Pcorn = βo + βioP · ioP  +  res 

 Pcorn = βo +  βoP · oP +  res 

ioP

oP

Pcorn
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1. Construct model 
Next, a model for the other explanatory variable, oP. 
The parameter βoP stands for rate of change in phosphorus content of corn, with respect to 
rate of change of organic phosphorus. 
 
Finally, a model that includes both explanatory variables 

 
The parameter βioP:oP stands for rate of change in phosphorus content of corn relative to 
rate of change of inorganic phosphorus, adjusted for effects of organic phosphorus.  It is 
read as ‘the rate of change in available phosphorus with change in inorganic phosphorus, 
controlled for organic phosphorus.’ 
 
The parameter βoP :ioP stands for rate of change in phosphorus content of corn, relative to 
rate of change in organic phosphorus, adjusted for effects of inorganic phosphorus.   

Together, these two parameters describe a plane through the data points (see Fig 1 
above).    These parameters are partial derivatives, for those who have had this in 
calculus.  The next figure distinguishes the simple regression coefficients (βioP  βoP) from 
the partial coefficients (βioP·oP   βoP·ioP)  

 Pcorn = βo + βoP·ioP · oP +   βioP:oP · ioP   + res 
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1. Construct the model  (continued) 
 
 
 
 
 
 
 
 
 
 
 
 
Because we have two explanatory variables we can investigate their interactive effects on 
the response variable.  Does the effect of one variable on the response variable depend on 
the other explanatory variable?  This interactive effect is described by the interaction 
term,   βoP*ioP  · ioP · oP 

 
The interaction term can be visualized as the degree of curvature of the surface fitted to 
the data.  If there is no curvature, a flat plane describes the phosphorus content of corn 
relative to the two measures of soil phosphorus.  If there is interaction (curvature) then a 
flat plane will not suffice.  
 
2.  Execute analysis. 
Place data in model format:  
   Column labelled Pcorn with response variable phosphorus content of corn (ppm) 
   Column labelled ioP, with explanatory variable inorganic phosphorus (ppm) 
   Column labelled oP, with explanatory variable organic phosphorus (ppm) 
Code the model statement in statistical package according to the GLM 
   Pcorn  =  βo  +  βioP:oP · ioP  +  βoP:ioP · oP  +  βoP*ioP · ioP· oP +  res 

 
Fits and residuals from:  
 model statement output of fitted values and residuals (as above), 
 parameters reported by GLM routine, 
 direct calculation of parameters. 
 
 
 

Pcorn = βo + βioP·oP · ioP  +  βoP·ioP · oP  +  βoP*ioP · ioP · oP   + res 

 MTB > glm 'Pcorn' =   'ioP'        'oP'    'ioP'*'oP' ; 
 SUBC> covariate  'ioP'  'oP'  ; 
 SUBC> fits c4;  
 SUBC> residuals c5. 

 
Partial regression is the same are regression of the residuals on the 
remaining variable. 
 
Regress Pcorn against ioP:  Pcorn = 62.6 + 1.23 ioP 
Take residuals from this model 
Regress these against another variable, oP 
 Res  =   3.84     - 0.09337       oP 

    oP:ioP 

This estimate is close to the original estimate of  oP:ioP  =   -0.111  
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2.  Execute analysis. 
The overall mean is  
 mean(Pcorn)  =  βo  =  76.18  ppm 
 
The regression equation for ioP is 
 Pcorn  =  62.6  +  1.23 ioP 
 
The regression equation for oP is 
 Pcorn  =  65.4  +  0.262 oP 
 
These are the simple regression coefficients.  The equations have been written in 
slope/intercept form, rather than in GLM form.  GLM form uses the grand mean �o 
rather than the Y-intercept.  The Y-intercept is calculated from the grand mean and the 
slope estimate.  The Y-intercept is not itself estimated because the estimate of the grand 
mean will be better.  This is because the grand mean will, by definition, be at the centre 
of the cloud of data points.  The Y-intercept will rarely be at the centre.  In many cases 
the Y-intercept will be completely outside the data points, and so cannot be estimated 
directly. 
 
The regression equation for both variables: 
 
Pcorn = 45.92 + 0.3278 oP  + 5.304 ioP  − 0.0830 ioP·oP 
 
These are the estimates of the partial regression coefficients.  Notice that they are not the 
same as the estimates of the simple regression coefficients. 
 
3. Evaluate model. 
 
Plot residuals versus fitted values 
 
Structural Model.  No bowls or arches are 

evident in a plot of residuals against fitted 
values, so straight line assumption 
acceptable. 

 
Error model 

Residuals homogeneous ?   
 No. Spindles present. 
Residuals  independent ?   

We have no information on temporal 
order or on spatial arrangement. So diagnosis is limited.  If we take the observations 
in the order presented we find no trends upward or downward. 
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The plot of residuals versus themselves (at lag 1) shows no positive or negative trends. 
 
Normal ?    
 
Yes.  The histogram looks close to normal. 
 
 
4. Partition df and SS according to model. 
 
dftot  = 17−1 
dfioP = 1  Because relation is expressed by regression line 
dfoP  = 1  Because relation is expressed by another regression line 
dfoP*ioP  = 1  This is the product of dfioP and dfoP 
dfres = 13  This is what is left over 
 
Calculate SStotal 
  SStotal =  ΣY2 - n-1(ΣY)2   =  4426.47 
 
 
In Minitab: 
 
 

 MTB > let c11 = lag('res*3') 
 MTB > plot c11 'res*3' 
         -                     * 
         - 
       12+ 
         -                                       ** 
 C11     -                                    * 
         -    *                                      *  * 
         -           * 
        0+                *                       * 
         -                                                       * 
         - 
         -                                  *    * 
         - 
      -12+                             * 
         -                                               * 
         - 
         -                        * 
         - 
           --+---------+---------+---------+---------+---------+----res*3  
         -21.0     -14.0      -7.0       0.0       7.0      14.0 

 MTB > hist 'res';  
 SUBC> increment 1.  
 Histogram of res   N = 17  
 Midpoint   Count  
    -2.00       1  *  
    -1.00       3  ***  
     0.00       9  *********  
     1.00       3  ***  
     2.00       1  *  

MTB> let k1 = stdev('Pcorn')*stdev('Pcorn')*16 
MTB> print k1 
   k1   4426.47 
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4. Partition df and SS according to model 

 
4. Calculate likelihood ratio for overall (omnibus) model. 
 LR = (1474.7/4426.5)-17/2 = 11416 
The regression model is 11,000 times more likely than the unreduced (null) model. 
The omnibus model is far more likely than the null model so we proceed to an analysis of 
each term in the model. 
 
5. Choose mode of inference.   
If we had prior estimates of the three model parameters, priorist inference to a revised 
belief (posterior probability) could be used.  We have no estimates. The agronomists who 
made these measurements may well have had no estimates at the time.  The agronomists 
presumably used a fixed measurement protocol, which lends itself to frequentist 
inference.  In a research setting such as an agricultural station there is no compelling 
reason to control Type I error at a fixed value.  An evidentialist approach (Edwards 1972, 
Royal 1997, Vieland and Hodge 1998) is appropriate. 
 
Moving to a World Beyond “p < 0.05” 
In 2016 the American Statistical Association published a statement on the use and abuse 
of p-values (Wasserstein. R  and N. Lazar 2016 The American Statistician 70, 129–133) 
Of particular note was the use of p < 0.05 as “significant,” and the tendency to treat this is 
yes/no conclusion as evidence.  The ASA Statement stopped just short of recommending 
that declarations of “statistical significance” be abandoned.  In 2019 that step was taken 
(Wasserstein et al 2019 The American Statistician 73- S1, 1–19: Editorial).  The 
statement concluded, based on a review of the broader literature and on the 44 articles in 
the special issue, that it is time to stop using the term “statistically significant” entirely. 
Each of the articles in the species issued offered recommendations for change, including 
a wide variety of replacements.  Only one article addressed teaching statistics, offering 
generalities.  None of the articles mention the evidentialist approach.  This is curious.  
Likelihood ratios are fundamental to both priorist and frequentist inference.  They do 
what frequentist or priorist inference cannot do—say which model has better evidential 
support.  They avoid the problems that attend  declaring statistical significance at a fixed 
Type I error.  They certainly have a place in Moving to a World Beyond ‘p < 0.05,’ the 
title of the 2019 ASA statement.  

GLM: Pcorn - βo = βioP:oP · ioP + βoP:ioP · oP + βoP*ioP · oP · ioP +  res 
Source: Total  =  ioP      oP    ioP * oP  +  res 
    df 17 - 1  =    1 +     1  + 1   + 13 
   SS 4426.5 + 2295.2  + 29.9  + 626.6  + 1474.7 
  Null model             Reduced model 
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Moving to a World Beyond “p < 0.05” 
Likelihood ratios are readily grasped by university students in the sciences.  At the same 
time evidential inference goes unknown by most thesis supervisors, thesis examiners, and 
journal referees.  One way of moving beyond “p<0.05” is to demonstrate an evidentialist 
approach relative to standard frequentist inference that stops at “statistically significant.”  
Not surprisingly the two approaches result in similar conclusions, with the exception that 
Type I error and “statistical significance” are absent from evidentialist inference. Multi-
ple regression will be presented first with a standard frequentist approach, then with an 
evidentialist approach for comparison.   
 
 5.  Define target of inference and whether sample is representative. 
The population is not enumerable (e.g. all corn plants in Iowa).  With frequentist 
inference the population is the result of a data generating mechanism defined by the 
experimental protocol and by the procedural statements for the response and explanatory 
variables. The population is hypothetical, generated by repeating the experimental 
protocol.  Thus, for the purposes of investigating the relation of phosphorus content to 
soil phosphorus, this sample is representative of the similar experiments on the same 
variety of corn plants for the range of inorganic and organic phosphorus in this 
experiment.  We cannot infer beyond these ranges. 
With an evidentialist approach inference rests on the choice of the probability model to 
calculate the likelihoods.   
The population is represented by the model  
 Pcorn  =  βo  +  βioP:oP · ioP  +  βoP:ioP · oP  +  βoP·ioP · ioP · oP   + ε   
where ε represents a normally distributed error. The justification rests on two arguments.  
First, the residuals conform satisfactorily to a normal error distribution.  Second, the 
process that generates a normal distribution--errors generated by large number of 
contributing causes-- are a reasonable supposition in this case.  Inference beyond the data 
at hand rests on the probability model and whether it applies to measurement of 
phosphorus content of corn relative to the soil.  The supposition rests on the propensity of 
corn to take up phosphorus from soil, a propensity subject to enough sources of 
perturbation to result in a normal distribution.   
 
6.  State statistic and sampling distribution. 
For evidentialist inference we will calculate a likelihood ratio for each parameter.  If we 
judge that the deviation from homogeneity was serious we could generate a likelihood 
ratio by Monte Carlo methods.  (Owen, A.B. 2001.  Empirical Likelihood. CRC Press).   
For frequentist inference the statistic for calculating Type I from the sum of squares is the 
F-ratio.  Its sampling distribution is the F-distribution.  If we judge that the deviation 
from homogeneity was serious, then we could generate the sampling distribution by 
Monte Carlo methods.   
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6. State HA Ho pairs for parameters. 
 
Here are the hypothesis pairs listed in the order in which they appear in the model. 
 
The first term concerns the effect of inorganic phosphorus, controlled for organic 
phosphorus. 
  HA:   βioP:oP  ≠  0 
  Ho:   βioP:oP =  0 
This is equivalent to the following hypotheses concerning parameter. 
  HA:   var(βioP:oP · ioP) > 0 
  Ho:   var(βioP:oP  ·ioP) = 0 
 
The second term concerns the effect of organic phosphorus, controlled for inorganic 
phosphorus. 
  HA:   βoP:ioP  ≠  0 
  Ho:   βoP:ioP =  0 
This is equivalent to the following hypotheses concerning the variance. 
  HA:   var(βoP:ioP · oP) > 0 
  Ho:   var(βoP:ioP · oP) = 0 
 
The third term concerns the interactive effect of organic phosphorus and inorganic 
phosphorus on phosphorus content of corn. 
  HA:   βoP*ioP  ≠  0 
  Ho:   βoP*ioP =  0 
This is equivalent to the following hypotheses concerning the variance. 
  HA:   var(βoP*ioP · oP) > 0 
  Ho:   var(βoP*ioP · oP) = 0 
 
7. ANOVA – Table source, df, SS.   
 
 
 
 
 
 
 
 
 
 
 
This partitioning is in the order in which the variables are listed in the model. 

 Source df Seq SS. SSadj    MSadj F----> p 
  
 ioP     1 2295.2  
 oP       1 29.9  
 ioP·oP 1 626.6   
 Error   13 1474.7  
 Total   16 4426.5  
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7. ANOVA - partition variance according to model. 
If we change the order of the variables, the partitioning will change. 
To take this into account, we use the adjusted Sums of Squares.   
That is, we use the SS for each explanatory variable when it is entered last into the GLM. 

 
In this example, the SS for oP*ioP remained the same as the previous partitioning.  This 
is because it was the last SS in the sequential partitioning. 
The SS for ioP is smaller in this partitioning, because now it is last instead of first. 
This partitioning (each variable last) is called the adjusted SS. 
The adjusted SS no longer add up to the total  SStot  =  4426.5  
so the total SS is not shown.  The SSerror remains the same.  
 
Statistical packages produce both the sequential and adjusted SS. The sequential SS is the 
default partitioning in some packages (e.g. R).  The adjusted SS is the default in other 
packages (e.g. Minitab).  Most packages allow the user to choose the partitioning. 
 
7. ANOVA- Frequentist. Calculate MS, F, Type I error 
 

 
MS = SS/df   for each term.  
Calculate the correct F-ratios.   
All terms in the model are regressions and so are taken as fixed.  The correct F-ratio is 
relative to the residual MS. 
 Fiop:oP  = 1061.8 / 113.4  = 9.36 
 Fop:ioP  = 149.4 / 113.4 = 1.32 
 Fop*ioP  = 626.6 / 113.4 = 5.52 
 

Statistical routines automatically report the Type I error from 
the F-distribution for each F-ratio in the ANOVA table.  
The probability of obtaining FioP·oP this large from our 
sampling distribution is p = 0.035 

 

 Source df Seq SS.       adjSS       MSadj.   F---->   p 
   
 ioP    1 2295.2 1061.8   
 oP      1 29.9 149.4   
 ioP*oP 1 626.6 626.6   
 Error  13 1474.7 1474.7  
 Total  16      4426.5  

 Sourcedf Seq SS. SSadj MSadj  F----> p 
  
 ioP    1 2295.2 1061.8 1061.8     9.36   0.009 
 oP      1 29.9 149.4 149.4     1.32   0.272 
 ioP·oP 1 626.6 626.6 626.6     5.52   0.035 
 Error  13   1474.7  1474.7                113.4 
 Total  16 4426.5  

MTB> cdf 5.52; 
SUBC> F 1 13. 
 
  5.52     0.965 
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8.  Recompute Type I error if necessary. 
 Assumptions judged to be met.  

Monte Carlo calculations are available if assumptions judged not met. 
 
9.  Report frequentist statistical conclusions about model terms. 

Ho:   var(βioP*oP · ioP) = 0  0.035  =  p  
 
We reject Ho that there is no interactive effect of the two forms of soil phosphorus on 
phosphorus content of corn. 
 
For an analysis with an interactive term it is best to report the entire table, showing 
Sources of variance, df, SS, MS, F  and Type I error. 
 
The SS should be clearly labelled as adjusted (Type III) SS. 
 
Similarly, we reject the null hypothesis of no effect of inorganic phosphorus. 

F1,13 = 9.36  p = 0.009 
 
We cannot reject the null hypothesis of an effect of organic phosphorus. 

F1,13 = 1.32 p = 0.272 
 
Critique of the analysis.  We rejected the null hypothesis twice.  In one case the rejection 
was marginal, with a Type I error of 3.5%.  The other rejection was at a far smaller error 
rate, less than a 0.1%.  The reject/not reject convention leaves aside the differences.  In 
this study there was no cost-based reason for limiting Type I error to a fixed level. An 
evidentialist approach is sufficient—report the likelihood ratio. 
 
7. ANOVA- Evidentialist.  Calculate SSfull , SSreduced, LR 
 
Here is an ANOVA table showing calculation of the likelihood ratio. 

Source df SSadj SSreduced SSfull SSo/SSA LR Evidence 
ioP 1 1061.8 1474.7 2536.5 1.720 100 Good 
oP 1 149.4 1474.7 1624.1 1.101 2.3 Inadequate
ioP*oP 1 626.6 1474.7 2101.3 1.425 20 Some 
Residual 13 1474.7 
Total 16 4426.5 

 
The flow of calculation begins with the adjusted sum of squares in the previous table.   
The flow proceeds from left to right as with the pervious table.   
The reduced model is the same for all three terms in the model.  
 This will not always be so.  It will vary in more complex models.  
The full model is calculated as  SSfull = SSadj + SSreduced 
The full (null) relative to the reduced model is  SSo/SSA = SSfull / SSreduced 
 This ratio decreases to 1 as the variance SSadj decreases to zero. 
The likelihood ratio is  LR = (SSo/SSA)(n/2). 
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7. ANOVA- Evidentialist. 
 
To avoid the loss of information that accompanies yes/no decisions we sort the likelihood 
ratios into categories.  An easily remembered ranking is  Some evidence  LR > 20 
 Good evidence  LR > 100 
 Strong evidence  LR > 1000 
The categories were chosen from the point of view of an odds ratio. 
20:1 odds approximate the odds at p = 5%: Odds = (1-5%)/ 5% = 0.95/0.05 = 19:1 
100:1 odds approximate the odds at p = 1% Odds = (1-1%)/ 1% = 0.99/0.01 = 99:1 
1000:1 odds approximate the odds at p = 0.1% Odds = (1-0.1%)/ 0.1% = 999:1 
 
These categories, while convenient, are not a recasting of p<5%,  p<1%, etc.   
We are no longer evaluating our results based on Type I error.  We are evaluating based 
on a measure of relative evidence, the likelihood ratio.    
 
8.  Recompute Type I error if necessary. 
 Assumptions were judged to be met.  If not met, we can estimate the likelihood ratio 
with Monte Carlo methods.  In this case, inference no longer rests on the normal error 
model.  Consequently inference applies only to the data at hand.  
 
9.  Report evidentialist statistical conclusions about model terms. 
 Ho / HA:  The likelihood of an interactive effect relative to no interactive effect. 
  LR =  L(βioP*oP ≠ 0) / L(βioP*oP = 0)  
  LR = 20 Some evidence for interactive effect 
 Ho / HA: The likelihood of an organic phosphorus effect relative to no effect. 
  LR = L(βoP ≠ 0) / L(βoP = 0)  
  LR = 2.3 Inadequate evidence for an effect of organic phosphorus 
 Ho / HA: The likelihood of an in organic phosphorus effect relative to no effect. 
  LR = L(βioP ≠ 0) / L(βioP = 0)  
  LR = 100 Good evidence for an effect of inorganic phosphorus 
 
10.  Report science conclusions. 
 
There is some evidence for an interactive effect of soil organic and soil inorganic 
phosphorus on phosphorus content of corn.  Our best estimate of phosphorus content of 
corn, given organic and inorganic phosphorus in soil is: 
 

Pcorn = 45.92 + 0.3278 oP  + 5.304 ioP  −0.0830 ioP · oP 
 
Most GLM routines will report standard errors or confidence limits for each parameter. 
 

 
 
 
 

 

Term          Coef   SE Coef     
Constant    45.92     12.24      
ioP          5.304     1.734     
oP           0.3278    0.2856    
ioP*oP      -0.08309   0.03536   
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10.  Report science conclusions. 
 
Our conclusion, based on the evidence, is similar to that had we used Type I error in 
evaluating our model.     
 
The failure to reject the null for organic phosphorus (and equivalently the insufficient 
evidence for an effect of soil organic phosphorus) suggests that we should simplify the 
model by dropping the oP term.  The revised model would be: 
 
 Pcorn  =  βo  +  βioP:oP · ioP  +  βoP*ioP · ioP · oP   + ε 
 
The oP term must be retained in the model in order to estimate the interaction term. 
Because oP appears in the interaction term we would still need to know the value of oP  
to predict phosphorus in corn. What if  the null hypothesis for the interaction term was 
not rejected?  Could we drop the term?  From the frequentist point of view this raises the 
nemesis of multiple testing—the idea that we revise and re-test a model to arrive at a 
better model.  If we do this, the limit on Type I error that we set no longer applies.  We 
would need to set the limit lower, according to the number to tests that we do with the 
same data. 


