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Model Based Statistics in Biology.    
Part III.  The General Linear Model. 
Chapter 9.7   Model Revision 
 
 
 
 
 
 
 
 
 
 
 
 
 
 on chalk board 
 
ReCap Part I (Chapters 1,2,3,4) 
Quantitative reasoning: Example of scallops,  
which combined  models (what is the relation of scallop density to substrate?)  
with statistics (how certain can we be?) 
ReCap Part II (Chapters 5,6,7) 
Data equations summarize pattern in data as a series of parameters (means, slopes). 
Frequency distributions, a key concept in statistics, are used to quantify uncertainty.  
Hypothesis testing uses the logic of the null hypothesis to make a decision about an 
unknown population parameter. 
Estimation is concerned with the specific value of an unknown population parameter. 
ReCap (Ch 9)  The General Linear Model is more useful and flexible than a 
collection of special cases. 
Regression is a special case of the GLM.  We have seen an example with the 
explanatory variable X fixed, an example with the explanatory measured with error, and 
an example for a non-linear (exponential) relation of response to explanatory variable.   

 
Wrap-up 
Power laws are common in biology. 
 Number of species in relation to area 
 Metabolic rate in relation to body size 
 Perimeter of a convoluted object (shoreline, leaf edge, etc). 
Power laws are usually analyzed taking logarithms, to linearize the equation   
Regression equations are inaccurate if relation not linear after taking logarithms 
Residual analysis is especially important in analysis of power laws. 
If the first model tried is not appropriate, based on residual analysis, an iterative 
approach is taken to arrive at an appropriate model. 

Today: 
Linear Regression for Power Laws, another non-linear relation. 

ReCap.  Part I (Chapters 1,2,3,4) 
ReCap Part II (Ch 5, 6, 7) 
ReCap Part III 
9.1 Explanatory Variable Fixed by Experiment 
9.2 Explanatory Variable Fixed into Classes 
9.3 Explanatory Variable Measured with Error 
9.4 Exponential Functions 
9.5 Power Laws.  Linear Regression 
9.6 Power Laws.  Non linear regression 
9.7 Model Revision 

Data files & analysis
Arrh.out 
Arrh.xls 
Gleason.xls 
Ch9.xls 
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GLM,  regression.    Application to power laws. 
Power laws are common in biology.  An example is the allometric relation of part of the 
body to the entire body (Gould ref). Goes back to Huxley 1932. 
 
Another example is the relation of metabolic rate to body size (Kleiber’s Law) 
Goes back to late 19th century, with the work of Rubner.  
 
Another example is the relation of species to area. 
As a rule of thumb species numbers will double for each tenfold increase in area. 
Species - area relations have a long history in biology. 
The first quantitative treatment was by Olof Arrhenius, who proposed the following 
relation of species to area  
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Nspref is the number of species in a reference quadrat  of area  Aref  
Nsp is the number of species in larger areas A formed by combining quadrats. 
 
Arrhenius, O. 1921.  Species and area.  Journal of Ecology 9: 95-99. 
 
To obtain a power law in conventional notation, Arrhenius’ relation is rewritten as 
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which becomes     Nsp Nsp A Aref ref 1 1/ / 
 

 

This is rewritten as    Nsp c Az  
 

where       c Nsp Aref ref 1/
 

 
Arrhenius reported values of    in areas ranging in size from 0.02 m2 to 1 m2  in 14 
different plant communities in Sweden. 
 
 
 
 
 
 
 
 
 
 



 3

 
GLM,  regression.    Application to power laws. 
In the following year H.A. Gleason showed that species numbers from this power law 
could not be reasonably extrapolated to areas larger that 1 m2.  He then proposed an 
alternative relation of species to area. 
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Gleason, H.A. 1922. On the relation between species and area.  Ecology 3: 158-162. 
 
Gleason reported values of  G for areas ranging from 2 m2 to 240 m2 in Aspen 
woodlands.  
 
Neither Arrhenius nor Gleason used regression methods to estimate their parameters.  
To illustrate power law regression, two data sets are analyzed.  The first is Arrhenius’ 
data for herb-Pinus wood in Sweden, which Gleason used to show that a power law 
cannot be extrapolated to large areas.  The second is Gleason’s data for aspen 
woodlands in Michigan. 
Here is the Arrhenius data. 
 
1. Construct model 
Response variable is number of species Nsp 
Explanatory variable is area    A 
 
Verbal model:  Number of species increases with area 
according to a power law 
 
Graphical model ... 
 
 
 
 
 
 
 
 
 
 
 
 

 1.0000 4.8000 
 2.0000 7.0000 
 4.0000 9.8000 
 8.0000 14.3000 
 16.0000 18.9000 
 32.0000 23.0000 
 64.0000 27.0000 
100.0000 33.0000 
 
Area Nsp 
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1. Construct model 
Distinguish response from explanatory variables.  
Response variable. 

Nsp = number of species in single quadrat or conjoined quadrats in herb-Pinus 
wood in Sweden. 

Explanatory variable. 
A = area of combined quadrats, ranging from 0.02 to 1 m2 
 each quadrat is (0.1 m)2  

 
Both variables are on a ratio type of scale, the explanatory variable (area) is fixed rather 
than measured. 
 
The formal model is  Nsp c Az        where z is the slope of the line 
 
To estimate the parameters by regression, the equation is rewritten in linear form   
 
 ln( ) ln lnNsp c z A   
 
 For population   ln(Nsp) =   + z  · ln A   +   
 For sample   ln( )   lnNsp z A error    

 Equivalently  ln( )   lnNsp z A erroro    
 
The y-intercept, , will be calculated from the estimate of the slope and the estimate of 
the grand mean, o . The estimate of c will be calculated from the estimate of the y-
intercept 

 
c e 

 

 
2. Execute analysis.  Place data in model format:  
 Column with response variable, ln(Nsp) 
 Column with explanatory variable ln(A) 
 
Code model statement in statistical package according to the GLM,  
compute residuals and fits. 
 
  ln(Nsp) =   + z  · ln A   +   
 
 
 
 
 

MTB > GLM ‘lnNsp’ = ‘lnA’ ; 
SUBC> residuals c5; 
SUBC> fits c6. 
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3. Evaluate model. 
Structural model:  Straight line? 
 
Plot residuals against  fitted values.   
 MTB > plot c6 c5 
  

 
Clearly, Arrhenius’ data do not fit a power law.   
Because of the strong arch in the residuals, any extrapolation to larger areas will greatly 
overestimate species numbers.   
 
At this point we return to step 1. 
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1. Construct the model 
Do the data fit Gleason’s model ? 
 

population                             Nsp AG    ln  

sample                             Nsp A errorG    ln   
 
2. Execute analysis.  Place Arrhenius data in model format:  
 Column with response variable   Nsp.   
 Column with explanatory variable   ln(A) 
 
Code model statement in statistical package according to the GLM,  
compute residuals and fits. 
 
  Nsp =   + z · ln A   +   

 
3.  Evaluate the model. 
Plot residuals against  fitted values.   
 

 
 
There is a clear bowl in the plot of residuals.  If we trim the high residuals at high or 
low areas, then we have an arch at intermediate sized areas. 
 
Arrhenius’ data do not fit Gleason’s model.  Rather than searching for a model 
appropriate to Arrhenius’ data, we examine Gleason’s data, beginning with Gleason’s 
model. 
 
 
 

MTB > GLM ‘Nsp’ = ‘lnA’ ; 
SUBC> residuals c5; 
SUBC> fits c6. 



 7

 
1.  Gleason model   
 For population Nsp =   + z · ln A   +   
 For sample  Nsp z A error    ln  
 
2. Execute analysis.  Place Gleason data in model format:  
 Column with response variable  Nsp   
 Column with explanatory variable ln(A) 
 
Code model statement,  compute residuals and fits. 
 
  Nsp =   + z · ln A   +   
 
 
 
 
 
Plot residuals against  fitted values.   
 

 
 
3.  Evaluate the model. 
There is a clear bowl in the plot of residuals. 
Gleason’s data do not fit Gleason’s model. 
Try the Arrhenius power law. 
 
1.  Arrhenius  model 
 For population ln Nsp =   + z · ln A   +   
 For sample  ln   lnNsp z A error    

    1      1    4.375  
    2      2    5.817  
    3      3    6.900  
    4      4    7.600   
    5      5    8.208   
    6      6    8.950  
    7      8    9.667   
    8     10   10.333  
    9     12   11.250   
   10     15   12.250   
   11     16   12.000   
   12     20   12.917  
   13     24   13.500  
   14     30   15.215  
   15     40   16.167   
   16     60   19.750   
   17     80   20.000   
   18    120   23.500  
   19    240   27.000 
 
obsno  area(sq m)  Nsp 

MTB > GLM ‘Nsp’ = ‘lnA’ ; 
SUBC> residuals c5; 
SUBC> fits c6. 
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2. Execute analysis.  Place data in model format:  
 Column with response variable, ln(Nsp).   
 Column with explanatory variable ln(A) 
 
Code  model statement,  compute residuals and fits. 
ln Nsp =   + z · ln A   +   

  
 
 
 
 

Plot residuals against fitted values.   

 
 
3.  Evaluate model. This looks promising at intermediate values.   
Do Gleason’s data follow (?) a power law at intermediate values (i.e., without the 
largest and the two smallest areas). 
 
1.  Arrhenius  model For population ln Nsp =   + z  · ln A   +  
    For sample  ln   lnNsp z A error    
 
2. Execute analysis.  Place data in model format:  
 Column with response variable, ln(Nsp) 
 Column with explanatory variable ln(A), where 3 m2 < A < 120 m2  

MTB > GLM ‘lnNsp’ = ‘lnA’ ; 
SUBC> residuals c5; 
SUBC> fits c6. 
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3.  Evaluate the model.  
Plot  residuals against  fitted values.   

 
 
Straight line acceptable?  Yes, because no bowls or arches. 
A power law is an acceptable model of Gleason’s data in areas ranging from 3 m2 to 
120 m2. 
 
Is Gleason’s model acceptable for Gleason’s data in the same range ? 

 
 
Gleason’s model not appropriate for Gleason’s data.  
Returning to the power law model for Gleason’s data we complete the analysis. 
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3.  Evaluate the error model. 
Homogeneity? 
Plot of residuals versus fitted values shows little evidence of heterogeneity of variance. 
 
Normal errors  ?  
 Histogram of Plaw4res   N = 14 
  
 Midpoint   Count 
     -0.6       1  * 
     -0.4       1  * 
     -0.2       4  **** 
     -0.0       3  *** 
      0.2       3  *** 
      0.4       1  * 
      0.6       0 
      0.8       0 
      1.0       1  * 
 

 
 

Histogram close to symmetrical,  
 Probability plot shows some evidence of non-normal residuals but not severe. 
 
Independent errors? Yes. 
 Plot of errors versus neighboring value. 
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3.  Evaluate the error model. 

 
 
There is a tendency toward negative correlation of errors, but it is slight. 
 
 
4. State sample, population, and whether sample is representative.  
 Population is all possible measurements, given the measurement protocol.   
 The power law was meant to be general. 
 
5. Decide on mode of inference.  Is hypothesis testing appropriate? 
No.  At this point we are more interested in the magnitude of the exponent than we are 
in whether there is a relation.  When log species number is plotted against log area there 
is no question that species number increases with area. Skip to step 10. 
 
10. Analyze parameters of biological interest. 
There was some evidence of non-normal residuals and perhaps some heterogeneity and 
non-normality of the residuals.  The violations are slight, and so confidence limits will 
not be recomputed by randomization methods.  
 
 Compute confidence limits from standard deviation of the slope parameter. 
 
MTB > regress ‘lnNsp' = ‘lnA' ; 
 Predictor       Coef       Stdev    t-ratio        p 
 Constant     1.59065     0.02166      73.45    0.000 
 lnA         0.327485    0.006854      47.78    0.000 
  
 s = 0.02384     R-sq = 99.5%     R-sq(adj) = 99.4% 
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10. Analyze parameters of biological interest. 
 
  GLM routine reports  = 0.327 ±0.006854 
 P{Lower < z < Upper} = 1   = 95% 
 Lower  =      t0.025[df] * st.err.  
 Lower =  0.327      2.1788*  0.006854/sqrt(14) = 0.331 
 Upper  =     + t0.025[df] * st.err.  
 Upper =  0.327  +    2.1788*  0.006854/sqrt(14)  = 0.323 
 
Which hypotheses are excluded by CI ? 
The CI excludes 1:1 relation of Nsp with Area. 
Does the CI for Gleason’s data include the conventional value ? 
The conventional value is based on doubling of species number with 10 fold increase in 
area. 
Arrhenius’ Law  
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 z = log(2)/log(10) = log(2)/1 = 0.3 
 
The CI includes an exponent of 0.3, the conventional value of the exponent of the 
species area curve at this spatial scale.  
 
The species area curve for Gleason’s (1922) data is: Nsp e A 1 59065 0 327. .  

 
It is a curious irony that Gleason’s data fit Arrhenius’ power law better that Arrhenius’ 
data.  It is a further irony that Arrhenius data does not fit a power law (for herb-Pinus 
woodland).  These conclusions are based on a powerful technique not known to either 
investigator, that of residual analysis. 


