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Model Based Statistics in Biology.    
Part III.  The General Linear Model. 
Chapter 9.5   Power Law Function, using Linear Regression 
 
 
 
 
 
 
 
 
 
 
 
 
 on chalk board 
 
ReCap Part I (Chapters 1,2,3,4) 
Quantitative reasoning: Example of scallops,  
which combined  models (what is the relation of scallop density to substrate?)  
with statistics (how certain can we be?) 
ReCap Part II (Chapters 5,6,7) 
Data equations summarize pattern in data as a series of parameters (means, slopes). 
Frequency distributions, a key concept in statistics, are used to quantify uncertainty.  
Hypothesis testing uses the logic of the null hypothesis to make a decision about an 
unknown population parameter. 
Estimation is concerned with the specific value of an unknown population parameter. 
ReCap (Ch 9)  The General Linear Model is more useful and flexible than a 
collection of special cases. 
Regression is a special case of the GLM.  We have seen an example with the explanatory 
variable X fixed, an example with the explanatory measured with error, and an example 
for a non-linear (exponential) relation of response to explanatory variable.   

 
Wrap-up 
Power laws are common in biology. 
 Number of species in relation to area 
 Metabolic rate in relation to body size 
 Perimeter of a convoluted object (shoreline, leaf edge, etc). 
Power laws are usually analyzed taking logs, to linearize the equation   
Regression equations are inaccurate if linear assumption not correct. 
Residual analysis is especially important in analysis of power laws. 
If the first model tried is not appropriate, based on residual analysis, an iterative approach 
is taken to arrive at an appropriate model. 

Today: 
Linear Regression for Power Laws, another non-linear relation. 

ReCap.  Part I (Chapters 1,2,3,4) 
ReCap Part II (Ch 5, 6, 7) 
ReCap Part III 
9.1 Explanatory Variable Fixed by Experiment 
9.2 Explanatory Variable Fixed into Classes 
9.3 Explanatory Variable Measured with Error 
9.4 Exponential Functions 
9.5 Power Laws.  Linear Regression 
9.6 Model Revision 

Data files & analysis 
Kleiber.xls 
Ch9.xls 



 2

 
GLM,  regression.    Application to power laws. 
Power laws are common in biology.  An example is the allometric relation of part of the 
body to the entire body (Gould ref). Goes back to Huxley 1932. 
 
Another example is the relation of species to area. 
As a rule of thumb species numbers will double for each tenfold increase in area. 
Species - area relations have a long history in biology. 
The first quantitative treatment was by Olof Arrhenius, who proposed a power law 
relation of species number to area  
Arrhenius, O. 1921.  Species and area.  Journal of Ecology 9: 95-99. 
 
Another example is the relation of metabolic rate to body size (Rubner’s Law) 
 
Kleiber (1932) reviewed the relation of the metabolic rate to body mass 
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E ref is the metabolic rate (kcal/day) of the reference unit (organism) of mass Mref (kg) 
E  is the metabolic rate of other units (organisms) each with mass M 
 /E M is the mass-specific metabolic rate of each organism. 

To obtain a power law in conventional notation: 
 

   E E M Mref ref     

                                           where                  
E M     

 

   E Mref ref
 

Table 1 in Kleiber (1932) reports average values of metabolic rate (kcal/day) and body 
weight (kg) for birds and mammals ranging in size from a ring dove to a steer.  The 
averages were based on numbers of organisms ranging from 2 to 136. 

     BMR      BMR 
   Mass  Kcal/day   Norganism Watts 
 
Ring Dove      0.15  19.5  9  0.94 
Female Rat     0.173  20.2  18  0.98 
Male Rat       0.226  25.5  23  1.24 
Pigeon         0.3  30.8  3  1.49 
Hen            1.96  106.0  14  5.14 
Female Dog     11.6  443.0  11  21.47 
Male Dog       15.5  525.0  10  25.44 
Sheep          45.6  1219.9  7  59.11 
Woman          56.5  1349.0  103  65.37 
Man            64.1  1632.0  136  79.08 
Cow            388  6421.0  4  311.15 
Steer          342  6255.0  4  303.11 
Steer          679     8274.0       2          400.94 
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1. Construct model.  
Response variable is metabolic rate E  (Watts) 
Explanatory variable is Weight M (kg) 
Verbal model: Metabolic rate is a 
power law function of body mass. 
 
The graphical model is a line ---->                                           
 

The formal model:    E k M 
  

Where   is the slope of the line  
on a log-log plot. 
 
To estimate the parameters by linear 
regression, the equation is rewritten in linear form by taking logarithms 

ln(  ) ln lnE k M    

The model for the population ln(  ) lnE M      

The model for the sample   ln(  )   lnE M      

This is equivalent to ln(  )   lnE Mo      
 
The y-intercept, , will be calculated from the estimate of the slope and the estimate of 
the grand mean, o . The estimate of k will be calculated from the estimate of the y-
intercept 

 
 k e 

 

 
2. Execute analysis.  Place data in model format:  

 Column with response variable ln(  )E  
 Column with explanatory variable ln(M) 
 
Code model statement in statistical package according to the GLM,  
compute residuals and fits. 

  ln(  ) lnE Mo      

 
 
 

or 
 
 
 

MTB > regress ‘lnNsp’ 1 ‘lnA’; 
SUBC> residuals c5; 
SUBC> fits c6. 

MTB > GLM ‘lnNsp’ = ‘lnA’ ; 
SUBC> residuals c5; 
SUBC> fits c6. 
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2. Execute analysis.   
 
To obtain the fitted values, we 
convert from logarithms back to the 
original scale.  
 
Formula Fits = exp (ln[fits]) 
Example 0.880 = exp (0.13) 
 
Note that after log transformation, 
the data equations become: 
 Data = Fits * Residuals 
 
3.  Evaluate structural model. 
Straight line? 
We plot the back calculated residuals 
against the back calculated fitted 
values. 
 
There is no convincing evidence of 
bowl or arch in the plot.  Straight line 
assumption accepted. 
 
3.  Evaluate error model. 
Homogeneous errors ? Yes.   
Dispersion around zero similar from left to right in residual vs fit plot. 
 
 
Normal errors?   
Yes, residuals close to line for normal 
distribution. 
 
 
 
 
Independent errors?  
We have no information on temporal sequence or 
on spatial arrangement.  We order the 
observations from small to large, to check this 
possible source of non-independence. The plot of 
errors versus neighboring error value shows no 
upward or downward trend.  We assume errors 
are independent. 
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ln(Data)   =ln(Fits)  + ln(Res) Data  = Fits  x  Res
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5.74 5.67 0.07 311.151 289.555 1.075
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4. State sample, population, and whether sample is representative.  
We have very little information to define the population.   Given the organisms 
(endothermic vertebrates) we might define the population as all possible measurements 
on endothermic vertebrates between 0.15 and 679 kg in body mass. 
Sample is taken as representative if data shows good fit to a simple power law.  
 
5. Decide on mode of inference.  Is hypothesis testing appropriate? 
No.  At this point we are more interested in the magnitude of the exponent than we are in 
whether there is a relation. We already know that metabolism increases with body size, a 
statistical test of the null hypothesis of no relation is of no interest.  Kleiber was 
interested in whether the exponent departs from 2/3, as expected if metabolism in a 
volume depends on the surface area of that volume.   We will calculate the likelihood of 
the observed parameter relative to the expected parameter value of 2/3 (steps 6 and 7),  
then skip to step 10, evaluate parameters. 
 
6. Use model to write likelihood ratio 

ln(  ) lnE Mo      

 LR
L data

L data
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7.  Extract Sum of Squares from Anova table. 
 SOURCE       DF          SS          MS         F        p 
  Regression    1      63.118      63.118  10683.67    0.000 
  Error        11       0.065       0.006 
  Total        12      63.183 
 
 LR = (0.065/63.183)(-13/2)   for β = 0 
 LR = 1019 
 
10. Analyze parameters of biological interest. 
There was no evidence of violation of assumptions so confidence limits will be calculated 
from t-distribution. 
 
Compute confidence limits from standard error of the slope parameter. 
  GLM routine reports ̂  = 0.73755 ±0.007136 
 P{Lower <    < Upper} = 1    = 95% 
 Lower  =   ̂    t0.025[df] * st.err.  
 Lower =  0.73755      2.201*  0.007136 = 0.722 
 Upper  =   ̂    + t0.025[df] * st.err.  
 Upper =  0.73755  +    2.201*  0.007136  = 0.753 
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10. Analyze parameters of biological interest. 
 
Which hypotheses are excluded by confidence limits ? 
 
The confidence limits exclude an exponent of 2/3 
They also exclude an exponent of zero (the null hypothesis). 
They also exclude an exponent of 1 (1:1 relation of metabolism to mass). 
The confidence limits do not exclude an exponent of 3/4.  
 
Kleiber’s 1932 paper ignited the search for an exponent relating metabolic rate to body 
mass higher than the 2/3 value expected from the Euclidean geometry of flux across a 
surface into or out of a volume.  Subsequent theoretical work focused on explanation of 
the 3/4 power law (e.g. West et al. 1997). 
 
____________________________________________________     
 
Exercises 
 
1.   Non-linear regression routines report ̂  = 0.668 ±0.04044  (standard error) 
 Calculate the confidence limits on this estimate using the t-distribution on 11 df. 
 
2.  From Quiz 5b 2017 
Regression on log transformed data is known to result in biased estimates (add refs). 
1. Using the estimates from nonlinear regression (below), write Kleiber’ law with 
numerical parameters  
  = 0.6689 ±0.0404 
  = 5.4435 ±1.349 
 
2. Calculate the expected BMR(Watts) for the 342 kg steer 
  using regression estimated from log transformed data: [1] 
 
  using estimates from non-linear regression: [1] 
 
  Comment on the difference relative to the observed BMR, 303.11 W  
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Extra [beyond course expectations] 
 
1.  The Kleiber data consists of means computed from sample sizes ranging from 2 to 

136.   Estimates based on a few organisms are less reliable than those based on larger 
numbers.  Most statistical packages allow the placing of greater weight on means 
from large samples than from small samples.  Use weighted regression to estimate the 
exponent that relates metabolic rate to body mass.  Does weighted regression change 
the results of analysis? 

 
 
2.  Rubner examined the relation of the mass specific metabolic rate to body mass in 7 

dogs, ranging in mass from 3 to 30 kg. 
  Rubner M. (1883) Über die Einflus der Körpergrösse auf Stoff und Kraftwechsel.  

Z. Biol. 19: 535-562 
 /

 /
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Eref   is the metabolic rate (kcal/day) of the reference unit (organism) of mass Mref (kg) 

E  is the metabolic rate of other units (organisms) each with mass M 
 /E M  is the mass-specific metabolic rate of each organism. 

To obtain a power law in conventional notation: 
 
 
Rubner’s relation is rewritten as    

 
 
which becomes            E E M Mref ref 
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This is rewritten as     

  
where 
    
 
If the exponent that relates metabolic rate to body mass is 2/3 (as Rubner expected), then  
  1 = 2/3 and    =  1/3. 
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Rubner computed and reported the mass-specific metabolic rate 
(  /E M ).  As a result, the response variable (  /E M ) has a built-in 
dependence on the explanatory variable M.   The strength of this 
computationally induced correlation depends on variation in M, 
relative to variation in E .Computing the metabolic rate E  from 
the mass-specific rate  /E M  (as in the table above) aggravates the 
problem by introducing computationally induced correlation of 
the  response variable E  with the explanatory variable M.   Does computationally 
induced correlation affect the parameter estimates?    Compare the regression of E =f(M) 
to the regression of   /E M =f(M) with respect  to (a) the parameter estimates; (b) 
explained variance r2; (c) F ratio; (d) p-value; (e) confidence limits; (f) whether a straight 
line model is appropriate, as judged from the residual versus fit plot.  
 
Summarize by stating which components (a-f) are affected by computationally induced 
correlation and which are not. 

1 31.20 35.68 1113.22 
2 24.00 40.91 981.84 
3 19.80 45.87 908.23 
4 18.20 46.20 840.84 
5 9.61 65.16 626.19 
6 6.50 66.07 429.46 
7 3.19 88.07 280.94 
 
Dog M E/M E  
 kg)  (kcal/day)


