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Model Based Statistics in Biology.    
Part III.  The General Linear Model. 
Chapter 9.4   Exponential Function, using Linear Regression 
 
 
 
 
 
 
 
 
 
 
 
 
 on chalk board 
 
ReCap Part I (Chapters 1,2,3,4) 
Quantitative reasoning: Example of scallops,  
which combined  models (what is the relation of scallop density to substrate?)  
with statistics (how certain can we be?) 
ReCap Part II (Chapters 5,6,7) 
Data equations summarize pattern in data as a series of parameters (means, slopes). 
Frequency distributions, a key concept in statistics, are used to quantify uncertainty.  
Hypothesis testing uses the logic of the null hypothesis to make a decision about an 
unknown population parameter. 
Estimation is concerned with the specific value of an unknown population parameter. 
ReCap (Ch 9)  The General Linear Model is more useful and flexible than a 
collection of special cases. 
Regression is a special case of the GLM.  We have seen  examples with the explanatory 
variable X fixed and examples with the explanatory measured with error. 

 
Wrap-up 
Exponential relations are common in biology. 
 Exponential growth of populations.  
 Exponential mortality of a cohort. 
 Exponential growth of organisms (over limited size ranges). 
The relation of response to explanatory variable is non-linear.   
To estimate exponential parameters we must either use  non-linear regression or make the 
equation linear so we can apply linear regression. 
 
 
 
 

Today: 
Linear Regression for Exponential Functions 

ReCap.  Part I (Chapters 1,2,3,4) 
ReCap Part II (Ch 5, 6, 7) 
ReCap Part III 
9.1 Explanatory Variable Fixed by Experiment 
9.2 Explanatory Variable Fixed into Classes 
9.3 Explanatory Variable Measured with Error 
9.4 Exponential Functions 
9.5 Power Laws.  Linear Regression 
9.6 Model Revision 

Data files and analysis 
Lungfish.xls 
Ch9.xls 



 2

GLM,  regression.    Application to exponential functions. 
Exponential rates are common in biology. 
An example: Intrinsic rate of population increase. 
 Data on population size N at time t  
 Draw graph (straight line, if logarithmic scale of N, but not for t). 
 Equation N   =   No e

rt 
 r is the intrinsic rate of increase.  It has units of % time1  
 r is the slope of the regression of loge N  against time t. 
 
Another example: specific growth rate from measurements of  body mass M at two points 
in time t = tfinal  tinitial. 
 M  = initial weight (kg) 
 Mo = recapture weight (kg) 
 t  = time in days from initial to recapture. 
 Equation M   =   Mo e

kt 
    loge ( M / Mo ) =  k t 
 k  = exponential growth rate =  ln(M/Mo)/t, with units of  % / day 
 
Data.   
Growth of 6 lungfish in 2001 in Lake Baringo, Kenya. 
Chrisestom Mlewa (2003)  Biology of the African 
lungfish Protopterus  aethiopicus Heckel 1851, and 
some aspects of its fishery in Lake Baringo, Kenya.  
Ph.D. Thesis, Department of Biology, Memorial 
University, St. John's, Canada. 
 
1. Construct the model 
Verbal model.  Growth rate of lungfish is exponential, with fixed growth rate k. 
Graphical model.   Loglinear plot of relation of M/Mo to t. 
 Response variable is M/Mo the ratio of final to initial weight. 

Explanatory variable is  t = time in days from initial to recapture. 
Formal model. M   =   Mo e

kt 
  This is a non-linear relation, hence to estimate k we must either use non-linear 

regression or make the equation linear so we can apply linear regression. 
 Here is the linearized model loge ( M / Mo ) =  k t 
  For the linearized model we compute the intercept from the estimates of the slope and 

the grand mean of the response.   
 
 For population  loge ( M / Mo ) =   +  k t 
 For sample   loge ( M / Mo )=   a + bt · t + error 
  same as:  loge ( M / Mo ) =   +   · t + error 

kg kg Time 
Initial End Days 
1.32 1.46 50 
1.30 1.48 64 
1.60 1.84 65 
0.76 0.90 56 
0.60 0.65 20 
2.74 2.86 48 
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1. Construct the model 
Linearization is widely used but unfortunately, it introduces bias (Smith 1984, 1993, 
Packard 2009) that compromises the predictive power of the relationship of the response 
variable to the explanatory variable (Zar 1968, Smith 1980, 1984). Bias associated with 
log transformations include the magnification of the effects of outliers (Smith 1980, 
1984), multiplicative error (Smith 1993), and inaccurate estimates of the dependent 
variable at large values of independent variable (Packard and Boardman 2008a). 
Advances in computer based graphics and statistical software allow estimates for non-
linear functions (Packard 2009).  We begin analysis with the classical approach, 
linearization.  We then evaluate whether to undertake non-linear estimation of the growth 
parameter. 
 
Packard GC (2009) On the use of logarithmic transformations in allometric analyses. J 
Theor Biol 257(3): 515-518 
Packard GC, Boardman TJ (2008a) Model selection and logarithmic transformation in 
allometric analysis. Physiol Biochem Zool 81(4): 496-507 
Smith JR (1993) Logarithmic transformation bias in allometry. Am J Phys Anthropol 90: 
215-228 
Smith RJ (1980) Rethink allometry. J Theor Biol 87: 97-111 
Smith RJ (1984) Allometric scaling in comparative biology: Problems of concept and 
method. Am Journal Phys Reg Int Comp Phys 246(2): 152-160 
Zar JH (1968) Calculation and miscalculation of the allometric equation as a model in 
biological data. BioScience 18: 1118-1120 
   
2. Execute model.    For this example we will use a spreadsheet 
Place data in model format. 
   Data in two columns, loge ( M / Mo ) and t  
Compute fitted values and residuals from parameter estimates. 
Parameter estimates from functions in spreadsheet (cells D19 D20) 
Fitted values from parameter estimates (column F). 

 A B C D E F G H 
1 kg kg Time ln(M/Mo) fits res kg  
2 Initial End Days    predicted  
3 1.32 1.46 50 0.1008 0.1096 -0.0088 1.47  
4 1.30 1.48 64 0.1297 0.1313 -0.0016 1.48  
5 1.60 1.84 65 0.1398 0.1329 0.0069 1.83  
6 0.76 0.90 56 0.1691 0.1189 0.0502 0.86  
7 0.60 0.65 20 0.0800 0.0631 0.0170 0.64  
8 2.74 2.86 48 0.0429 0.1065 -0.0636 3.05  
9     

10  SS 1359.5 0.01025 0.00327 0.00698  
11  df  5 1 4  
12     
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Move numbers to ANOVA table.  
 

13   Source df SS MS F p
14   Area 1 0.00327 0.00327 1.87 0.243
15   Residual 4 0.00698 0.00175  
16    0.01025  
17     
18    coeff stdev lower upper 
19   slope 0.155% 0.113% -0.160% 0.470% 
20   intercept 0.0321  
21     

 
 
Explanation of computations in spreadsheet. 

 
2.  Execute model:   
The least squares estimate of growth rate is  0.155% per day.  The intercept is 3.21%. 
The general linear model is then: 
  

 
Compute  residuals as observed  fitted. 

GLM: M/Mo    0.11037 =   0.00155 (t   50.5) +  res 
Regression Eq: M/Mo = 0.0321 + 0.00155 t  +  res 

Column D =LN(B3/A3)  produces value of 0.1008  (paste from D4 to D8) 
Column E =INTERCEPT($D$3:$D$8,$C$3:$C$8)+SLOPE($D$3:$D$8,$C$3:$C$8)*C3 
     produces value of 0.1096 (paste from E4 to E8) 
Column F =D3-E3   produces value of -0.0088 (paste from F4 to F8) 
Column G =A3*EXP(E3)  produces value of 1.47  (paste from G4 to G8) 
Cell C10 =DEVSQ(D3:D8) produces value of  1359.5 (paste from D10 to F10) 
Cell D11 =COUNT(D3:D8)-1 
Cell E11 =1 
Cell F11 =COUNT(F3:F8)-2 
Cells D14 and D15 from E11 and F11 respectively (df to ANOVA table) 
Cells E14 and E15 from E10 and F10 respectively (SS  to ANOVA table) 
Cell F14 =E14/D14     MS 
Cell F15 =E15/D15     MS 
Cell G14 =F14/F15     F-ratio 
Cell H14 =FDIST(G14,D14,D15)   p-value  
Cell D19 =SLOPE($D$3:$D$8,$C$3:$C$8) 
Cell D20 =INTERCEPT($D$3:$D$8,$C$3:$C$8) 
Cell E19 =SQRT(F15/C10)   standard error of slope 
Cell F19 =D19-E19*TINV(0.05,D15)  Lower Confidence Limit 
Cell G19 =D19+E19*TINV(0.05,D15)  Upper Confidence Limit 
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3.   Evaluate the model. 
Check straight line assumption for regression. 
  No arches or bowls.  
  
 So linear model is acceptable. 
 
Check error model (homogeneous, normal, 
independent errors). 
 
Homogeneity is difficult to judge with 
only 6 residuals.  There appears to be 
greater spread in the middle of the graph than on either side, but this is an artifact of only 
one residual to the left and only two residuals to the right.   We will assume that residuals 
are homogeneous. 
 
Normal errors ? 
Too few residuals to construct a histogram. 
Probability plot shows normal errors. 
 
Independent errors ? 
Fish recaptured on different dates so we will assume 
no influence of one measurement on another and 
hence independent errors.   
 
4. State sample, population, and whether representative. 
All lungfish ?   Probably not. 
All fish that could have been collected when the collection was made. 
 This is a more realistic statement of the population. 
 But it may not be defensible unless this collection was made at random, 
  which is not likely. 
All measurements that could have been made on 6 fish by this protocol. 
 This is an even more restrictive statement of the population. 
 This is a hypothetical rather than an enumerable biological population. 
 In this example, an enumerable  population is not defensible. 
 So a hypothetical population, based on repeatable protocol, is used. 
 The results apply to other observational studies using the same  
  measurement protocols. 
 The model to which we are inferring applies to egg number,  
  given a knowledge of fish size. 
 
5. Decide whether to use hypothesis testing. 
The research objective is to estimate specific growth rate of fish.   
We will examine the parameters and compute confidence limits (skip to step 10). 
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10.  Examine parameters of biological interest. 
Calculate confidence limits so as to include true value of  M  95% of time. 
 
 sb

2 = sy.x
2/x2 = (0.00175/1359.5) = 0.00000128 

 sb  =  square root of sb
2  = (0.00113) (0.113 %/day) 

 
For 95% limits use t0.05/2[4]  because df = 4 =  
 L  =  Lower limit   =  M   t/2[]sb = 0.00115   0.00113*2.776 = 0.160 %/day 

 U  =  Upper limit   =  M  +  t/2[]sb = 0.00115 + 0.00113*2.776 = 0.470 %/day 
 
 
The confidence limits include zero, leading to the conclusion that there was no growth.  
However, all 6 fish were larger upon recapture than initially.  This is an improbable result 
(0.56 = 0.0156) under the null hypothesis of no growth (binomial test).  Consequently we 
can exclude the hypothesis of no increase in mass (a biologically possible outcome in 
fish).  However, we cannot exclude the hypothesis of no exponential increase in biomass, 
based on the confidence limits for the growth parameter k.   
 
The estimate of growth rate is approximately 0.1%/day, or about 3% per month. 
The estimate is however, not very reliable because we have so few fish.   
 
This unreliability can be seen when we plot the confidence limits on the growth equation.  
The confidence limits for the equation are not the same as for the parameters.  The 
confidence limits become wider the further the distance from the mean value of X.  This 
shape accommodates a range of slopes, all running through the same point, the mean 
value of the Y and X variable.   
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Draw cdf, arrows going from p-value (vertical axis) 
over to curve and down to t statistic (horizontal axis).
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Given the uncertainty and the absence of outliers to distort the estimates, a better estimate 
of the growth parameter k via non-linear estimation is not necessary. 


