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Model Based Statistics in Biology.    
Part III.  The General Linear Model. 
Chapter 9.2   Regression.  Explanatory Variable Fixed into Classes 
 
 
 
 
 
 
 
 
 
 
 
 
 on chalk board 
ReCap Part I (Chapters 1,2,3,4) 
Quantitative reasoning: Example of scallops,  
which combined  models (what is the relation of scallop density to substrate?)  
with statistics (how certain can we be?) 
ReCap Part II (Chapters 5,6,7) 
Data equations summarize pattern in data as a series of parameters (means, slopes). 
Frequency distributions, a key concept in statistics, are used to quantify uncertainty.  
Hypothesis testing uses the logic of the null hypothesis to make a decision about an 
unknown population parameter. 
Estimation is concerned with the specific value of an unknown population parameter. 
ReCap (Ch 9)  Regression is a special case of GLM 
 Yesterday, we looked at regression of a response variable against an 
   explanatory variable that was fixed by experimental manipulation. 

 
Wrap-up 
 Regression a special case of the GLM. 
 This example was similar to previous, except that x variable fixed into classes. 
          Number of families per class differs, so means based on large number of families            
          give n more weight than means based on less information, hence poorly estimated. 
 
 
 
 
 
 
 
 

Today: 
Regression.  Special case of the general linear model.  
  X variable from observational study, rather than experimental study. 
Work through a generic recipe to illustrate the use of the general linear model. 

ReCap.  Part I (Chapters 1,2,3,4) 
ReCap Part II (Ch 5, 6, 7) 
ReCap Part III 
9.1 Explanatory Variable Fixed by Experiment 
9.2 Explanatory Variable Fixed into Classes 
9.3 Explanatory Variable Measured with Error 
9.4 Exponential Functions 
9.5 Power Laws.  Linear Regression 
9.6 Model Revision 

Data files & analysis 
PrsnLee.out 
Ch9.xls 
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Hfather Hson Nfamily
59 63.667 3.0
60 65.643 3.5
61 66.344 8.0
62 65.559 17.0
63 66.679 33.5
64 66.740 61.5
65 67.186 95.5
66 67.606 142.0
67 67.951 137.5
68 69.078 154.0
69 69.385 141.5
70 69.744 116.0
71 70.497 78.0
72 70.872 49.0
73 72.000 28.5
74 71.500 4.0
75 71.727 5.5

1078

GLM, applied to regression    X variable fixed into classes.  Observational study. 
Example.  Galton’s Law 
 
Quantity of interest is the stature (height) of sons in relation to stature (height) of their 
fathers. 
 
What is the relation of height of offspring to parents?  How heritable is this trait ? 
 
Data collected by Francis Galton at end of the 19th century.   
Reported by K. Pearson and A. Lee  in 1903, with analysis. 
 
Pearson, K., A. Lee. 1903.  On the laws of inheritance in man.  
I. Inheritance of physical characters.  Biometrika 2: 357-462. 
 
This was the first application of regression, a method that Pearson invented to analyze 
Galton’s data.  Galton found that the height of sons ‘regressed’ toward the mean value of 
fathers in a height class.  
 
1. Construct model 
Begin with verbal model:  

There is a positive relation between heights of sons and 
fathers. 

Graphical model. 
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Formal model.   Begin by distinguishing response from explanatory variables. 
 
Hson  Response variable is height of sons, in inches, from 1078 families  
Hf  Explanatory variable is height of father, in inches         
Nfam  Number of families at each stature interval 
 
Data computed from Table 22 in Pearson and Lee (1903). 
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1. Construct model 
This is an observational study in which the measurements on fathers and sons are both 
made with error.  However the data were grouped into fixed size classes of the 
explanatory (independent) variable, height of fathers.   This reduces the measurement 
error in the explanatory variable substantially because of the large number of fathers in 
each size class.  We take the explanatory variable (heights of fathers) as the class mark, 
having relatively little variation. 
 
This example differs from the previous example in having an explanatory variable in 
fixed classes, rather than on levels fixed by an experiment. 
 
 
 
 
 
 
 
 
Write formal model (write GLM) 
 For population Hson =  + Hf  ·  Hf +  
 For sample  Hson  =  + ̂ H f · Hf +  

 same as:  Hson = a + bHf · Hf + e 
 
2. Execute analysis.  Place data in model format:  
 Column with response variable, Hson.   
 Column with explanatory variable Hf 
 
Code model statement in statistical package according to the GLM 
  Hson  =  + Hf · Hf +  

 
 
 

 
Many packages have a graphics interface that assists in constructing the model (Minitab, 
SPSS). If you are using the graphics interface, you may want to look at the code produced 
by the interface, so that you understand how the model you wrote translates into a model 
statement in your package. 
 
In this example we use a weight command that takes into account the different number of 
cases at each value of of the explanatory variable Hf.   Means based on large number of 
families are given more weight than means based on less information.  The data column 
(c3) has the number of families at each value of Hf.    

MTB > GLM ‘Hson’ = ‘Hf’ ; 
SUBC> weights c3. 

Symbol Units   Dimensions  Notation 
Hson  inches   Length [L]  Roman: observed values  
  same as Hson  same as Hson Greek: parameter 
Hf  inches    Length [L]  Roman: observed values 
Hf  none (in/in)  none [L/L]  Greek: parameter 
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2. Execute analysis.    Compute fitted values and residuals.   
 Model based routines calculate residuals and fits as output. 
 Here  are examples from Minitab. 

 
 
 

 
 
 
 
 
 
 
 
 

Residuals are calculated  from fitted values, which were calculated from parameter 
estimates. 

Fitted values:     Fits  =  E[Hson] =     + ̂ Hf  · Hf  
 Residuals:  Res = Hson  Fits 
 
3. Evaluate model.    Plot residuals against fitted values. 
Whenever we fit a line we evaluate whether there is some pattern of deviation from the 
line.   
 
MTB > plot 'res' 'fits' 
         _ 
 res     _          * 
         _       * 
         _ 
     0.70+ 
         _                                                 * 
         _                 * 
         _                                 * 
         _                                           * 
     0.00+                    *  *            *         * 
         _              *            *            * 
         _                              * 
         _    *                                                * 
         _ 
    -0.70+                                                        * 
         _ 
         _ 
           __+_________+_________+_________+_________+_________+____fits     
          64.0      65.6      67.2      68.8      70.4      72.0 

 
Residuals show no bowls or arches.  
The straight line model is acceptable. 

 MTB > GLM Hson = Hf; 
 SUBC> weights c3; 
 SUBC> fits c4; 
 SUBC> res c5. 

 MTB > regress c2 1 c1; 
 SUBC> weight c3;             #weighted by number of cases 
 SUBC> fits c4; 
 SUBC> res c5. 
 
 The regression equation is 
 Hson = 33.3 + 0.523 Hfather  #slope is 0.5  
                              #stature regresses --> mean 
  
 Predictor       Coef       Stdev    t-ratio        p 
 Constant      33.284       1.643      20.26    0.000 
 Hfather      0.52254     0.02425      21.55    0.000 
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3.  Evaluate model. 
Next, we evaluate the error model (homogeneous, normal, and independent errors) 
 
Errors homogeneous? 

Plot of residuals versus fitted values suggests that variance might be larger at low 
values than at intermediate values.  But this is at best weak, compared to what we will see 
when assumption of homogeneity has been seriously violated. 
 
Errors normal? 
 When the response variable consists of means, we expect the residuals to be 
normally distributed.  As expected the residuals are close to normal.  Both plots show a 
slight tendency toward too many values clustered near zero, too few in the adjacent 
values. 

 
Errors independent? 

We have no information on temporal order or spatial layout of samples, to evaluate 
this assumption.  Observations can have non-independent errors for many reasons. In 
contrast, we do not expect means from groups to have non-independent errors. 
We judge that the straight line model and the error model are both acceptable. 
 
4. Partition df and SS according to model. 
  Hson =  + Hf  ·  Hf +  
   17-1 = 1 + 15 
 2248  = 2177.9 + 70.34 

MTB > nscores c5 c6 
 MTB > plot c6 c5 
 C6      _ 
         _                                                         * 
         _ 
      1.2+                                                    * 
         _                                       * 
         _                              *      * 
         _                          * 
         _                       ** 
      0.0+                      * 
         _                    ** 
         _                   * 
         _             *    * 
         _          * 
     _1.2+          * 
         _ 
         _  * 
         _ 
           __+_________+_________+_________+_________+_________+____res   
            -0.70     -0.35        0.00       0.35       0.70       1.05 

MTB > hist 'res'; 
 SUBC> incr .25. 
  
 Histogram of res   N = 17 
 Midpoint   Count 
   -0.750       1  * 
   -0.500       2  ** 
   -0.250       2  ** 
    0.000       7  ******* 
    0.250       1  * 
    0.500       2  ** 
    0.750       0 
    1.000       1  * 
    1.250       1  * 
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4. Calculate likelihood ratio for omnibus model 
Full model / reduced model = 2248/70.34 = 31.96 
LR = 31.9617/2 = 6 x 1012 
The reduced model is 6 x 1012  more likely than no relation. 
The likelihood ratio puts a number to the obvious, when looking at the mean heights of 

sons in relation to fathers.  Heights of sons increase in linear fashion as the heights 
of fathers increase.   

 
5. State population and whether sample is representative.  

Population is all possible measurements, given the measurement protocol, if we 
repeated the study thousands of times.  We will infer to a population consisting of 
thousands of runs of the same experiment, using the same protocol.   

What if we ran the study elsewhere in the world, rather than just England? From the 
title of the publication the authors were prepared to infer to all people in the world. 

 
5. Decide on mode of inference.  Is hypothesis testing appropriate? 

If yes step 6.  
 

Hypothesis testing is appropriate, the measurement protocol is readily repeated. The 
population is many repeats of the study in the relatively well-off members of  Galton’s 
social circle.  At the time of Galton’s study the state of science knowledge was no 
evidence or theory, and so no relation. However, from everyday experience with 
fathers and sons we expect a positive relation. And from animal husbandry in Galton’s 
time, we expect a positive relation of offspring to parents.   

A one to one relation of heights of sons to fathers is a more plausible hypothesis 
than no relation.   We thus have more than one alternative hypothesis.  We will use 
confidence limits to evaluate both the null and the 1:1 hypothesis.  Confidence limits, 
like Neyman-Pearson hypothesis testing , start with fixed tolerances of Type I error.   
For a 95% confidence limit we are tolerating a 5% error rate in falsely rejecting a null 
hypothesis.  
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10. Report and interpret parameters of biological interest. 

GLM routines reports ̂ Hf = 0.52254 ±0.02425 
 
To test multiple hypotheses we compute confidence limits from the standard error of 

the slope parameter, 0.02425. 
 
P{Lower <  Hf  < Upper} = 1   = 95% 
Lower =  ̂ Hf   t0.025[df] * st.err.  
Lower =  0.52254      2.1315 * 0.02425 = 0.471 
Upper  =   ̂ Hf  + t0.025[df] * st.err.  
Upper =  0.52254 +    2.1315  * 0.02425 = 0.574 
  
Confidence limits exclude several hypotheses about change in height of sons with 

change in height of fathers (Hson / Hfather   = Hf ) 
They exclude the hypothesis of no relation:  Hf  = 0. 
They exclude a 1:1 relation, which is what we might have expected. 
They are consistent with a simple rule of height inheritance: Hf  = 0.5 

 
Report conclusion with statistical evidence: 

  Hson  = 33.284  + 0.52254 Hf 
Likelihood ratio.  LR = 6 x 1012 
The 95% confidence limits, which are narrow, include a value of 0.5. 
0.471 < Hf  < 0.574   

 
There was as a half unit increase in height of sons for each unit of increase in height 

of fathers.  Galton described this as the ‘regression toward the mean.’  Sons tend to be 
closer to the mean (shorter than father if father tall, taller than father if father short).    

Galton’s concept of regression to the mean became attached to Pearson’s estimation 
method.  Estimating the rate of change in one variable with change in another is not 
called regression.  

Why does the relation of heights of sons to fathers follow 0.5:1 relation instead of a 
1:1 relation?  Hint: how many genes does a son inherit from his father? 

 


