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Model Based Statistics in Biology.    
Part III.  The General Linear Model. 
Chapter 9.1   Regression.  Explanatory Variable Fixed by Experiment 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

on chalk board 

ReCap Part I (Chapters 1,2,3,4) 
Quantitative reasoning: Example of scallops,  
which combined  models (what is the relation of scallop density to substrate?)  
with statistics (how certain can we be?) 
ReCap Part II (Chapters 5,6,7) 
Data equations summarize pattern in data as a series of parameters (means, slopes). 
Frequency distributions, a key concept in statistics, are used to quantify uncertainty.  
Hypothesis testing uses the logic of the null hypothesis to make a decision about an 
unknown population parameter. 
Estimation is concerned with the specific value of an unknown population parameter. 

 
 
 
 
 

 
Wrap-up 
  Going to use the General Linear Model. 
  The GLM consists of familiar and new components. 
  Regression a special case of the general linear model. 
  Response variable as a function of a single explanatory variable. 
  Relation between variables expressed as a slope. 
  HA/Ho pair about this parameter. 
 Model evaluated by partitioning variance in the data according to the model. 
  Decision declared about  F = ratio of explained (model)  
 to unexplained (residual) variance. 
 
 
 
 
 

ReCap.  Part I (Chapters 1,2,3,4) 
ReCap Part II (Ch 5, 6, 7) 
ReCap Part III (Ch 8 GLM components) 
9.1 Explanatory Variable Fixed by Experiment 
9.2 Explanatory Variable Fixed into Classes 
9.3 Explanatory Variable Measured with Error 
9.4 Exponential Functions 
9.5 Power Laws.  Linear Regression 
9.6   Model Revision 

Data files & analysis 
SC_9_3_1.out 
Ch9.xls 

Today: The  General Linear Model 
Regression: Single explanatory variable fixed by experiment. 
Work through this example, using a generic recipe.
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GLM, applied to regression    X variable fixed.  Experimental studies. 
 
Example 9.3.1 from Snedecor and Cochran (1989).  Quantity of 
interest is the phosphorus content of corn (Pcorn in ppm), in 
relation  to the phosphorus levels in samples of  soils with 
experimentally fixed levels of phosphorus (Psoil in ppm). 
 
Does the phosphorus content of corn increase when soil 
phosphorus is increased ? 
 
1. Construct model 
Constructing a model can appear formidable, but it is not, if taken step 
by step.  We will proceed around the triangle, starting with verbal model, proceeding to 
graphical, and finally formal model. 
 
Verbal model: Phosphorus content of corn depends on Phosphorus content of soil. 
 
Graphical model. 
 
The verbal and graphic model help us to 
distinguish the response from the explanatory 
variables. 
 
First, distinguish response variable from the 
explanatory variable or variables.   
Response variable is  
 Pcorn = Phosphorus content of corn (ppm). 
 Continuous variable on a ratio type of scale. 
 This is also called the dependent variable. 
The explanatory variable is  
 Psoil = phosphorus content of prepared sample of soil (ppm).   
 The levels of Psoil are fixed in this experimental study.  
 
This is an important step.  Separating the response from explanatory variables is the first 
and most important step in statistical analysis.  If someone comes to you for statistical 
advice, the best way to help is often to ask them to state the response variables, and to 
separate these from the explanatory variables.  This clears away the fog that surrounds the 
search for the “right statistical test.” 
 
 

 
 

 Psoil Pcorn
 
1  64 
4  71 
5  54 
9  81 
13  93 
11  76 
23  77 
23  95 
28 109 
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1. Construct model 
State type of measurement scale for response variable and explanatory variable(s).   
Assign symbols, state units and type of measurement scale. 
  Units Dimensions Type of measurement scale 
Response Pcorn (ppm) dimensionless    ratio 
Explanatory Psoil (ppm) dimensionless    ratio 

 
Now write the model using names of quantities.  
 Pcorn = f(Psoil). 
 "Phosphorus in soil depends on phosphorus in the soil" 
Finally, write the model in more abstract form, which is what the computer will use to 
carry out the analysis. 

 Pcorn =  + PSoil · Psoil +  
With practice, this sequence becomes practically automatic. 
This is the model for the population 
   and PSoil are parameters for the population. 
 
  Units   Dimensions   Type of measurement scale 
  same as Pcorn none (mass/mass)   ratio 
PSoil  (ppm/ppm)  none     ratio 
 

This helps in deciding on the statistical model to use.   
 Response variable 
    if nominal–> frequencies, then Generalized Linear Model  GzLM 
  if nominal  then median test, binomial tests, etc 
  if ordinal  then  "non-parametric" tests.  e.g. Kruskal-Wallis 
  if ratio   then  GLM 
 Explanatory  variable in GLM 
  if nominal   then ANOVA 
  if ordinal    then ANOVA 

               if ratio     then regression 
  if ratio and otherwise then ANCOVA 
 Explanatory variable in GzLM 
  if nominal   then G-tests and extensions 
  if ordinal   then G-tests and extensions 
  if ratio    then logistic regression etc
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1. Construct model 
 Here is the model for the sample.  It uses parameter estimates from data.  
  Pcorn =   + ̂ Psoil · Psoil + residual 

   and ̂ PSoil are estimates of the parameters   and  PSoil  
 
 We will use greek letters for the population parameters, and the hats on top of the greek 
symbols for estimates of these parameters.   An alternative convention is to use greek 
letters for population parameters, roman letters for estimates.  
Using this convention, the model for the sample is written as: 
 
 Pcorn = a + bPsoil · Psoil + residual 
 

2. Execute analysis.    Place data in model format:  
 Column of data for response variable labelled    Pcorn 
 Column of data for explanatory variable labelled   Psoil 
 
Code model statement in statistical package according to the GLM 
 Pcorn =  + PSoil ·Psoil +  

 
 

All packages use a model statement to code the GLM.  In some packages this model 
statement is typed  (SAS, Minitab, R).  In other packages it is present but not obvious.  
The example in the box shows the coding in Minitab for two different commands that 
produce the same result.  Some packages have a graphics interface that allows you to code 
this model (e.g., SPSS). If you are using the graphics interface, it helps to look at the code 
produced, so that you understand how the model you produce with the graphic interface 
translates into a model statement. 
 
2. Execute analysis.    Compute fitted values and residuals.  
The model statement is similar across statistical packages. 
Extracting the residuals and fits differs among packages.   

 
 
 
 
 
 
 

MTB> regress ‘Pcorn’ 1 ‘Psoil’
MTB> GLM Pcorn = Psoil. 

MTB > GLM Pcorn = Psoil; 
SUBC> fits fits; 
SUBC> res resisuals. Minitab

 MTB > print 'Pcorn' 'fits' 'residuals' 
   ROW  Pcorn     fits      res 
    1     64   62.997    1.0031 
    2     71    67.248    3.7524 
    3     54    68.665  _14.6645 
    4     81    74.332    6.6679 
    5     93    80.000   13.0003 
    6     76    77.166   _1.1659 
    7     77    94.169  _17.1687 
    8     95    94.169    0.8313 
    9    109   101.253    7.7468 

Proc GLM; 
   Model Pcorn = Psoil SAS

CornModel <- lm(Pcorn ~ Psoil) 
 R

Regress Pcorn Psoil, 
 Stata
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 GLM:        Pcorn    80.0  =            1.42  (Psoil  13.0) +  res 
Regression Eq: Pcorn                = 61.58 + 1.42  Psoil              +  res 

2. Execute analysis.    Compute fitted values and residuals.  
Here is the computional sequence: 

1. Estimate the parameters 
2. Calculate fitted values from the parameter estimates, for each data equation. 
3. Calculate the residuals  (response variable  fitted value). 

These are readily obtained in from model based routines in statistical packages.  We 
depend on the package to make these calculations correctly.  Here is a brief tour of the 
machinery, for those who are interested.   
 
1. Estimate parameters  and  PSoil from the sample.  The least squares estimate of PSoil 
minimizes the sum of the squared residuals (deviations of the data from the line).   
  
 
 
 
where there are n observations indexed by i.   Some routines use iterative search: make a 
guess, compute the SSerror, make another guess, compute SSerror for this guess, compare to 
previous SSerror,  continue until SSerror is as small as possible.   
 
For a simple straight line model most routines obtain the 
estimate of ̂   from the following formula. 
 
 
For the Corn data the estimate is  ̂ Psoil = 1.4169  
 
To estimate the y-intercept  we use the mean values of the 
response and explanatory variable.   
 mean(Pcorn) = ̂ 0  = 80 ppm 
 mean(Psoil) = 13.0 ppm 
   =  ̂ 0   ̂ Psoil (mean(Psoil) = 80  1.42(13) 
   =  61.58 ppm 
 
Here is the relation of the regression equation (which has the y-intercept ) to the GLM 
(which has o the mean value of the response variable). 
 
 
 
 
2. Calculate the fitted values from the parameter estimates,  
 Fitted values:    Fits  =  E[Pcorn] =     + ̂ Psoil · Psoil 
3. Calculate the residuasl from the fitted values: 
 Residuals: Res = Pcorn  Fits 
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3. Evaluate Model.    
We use the residuals to evaluate the model.   
 
We begin by examining the straight line assumption. Is this valid? 
We use the residual versus fit plot to evaluate this assumption. 
If the assumption is valid, the plot will show a band from left to right.  If the assumption is 
not valid, the plot will show either a bowl or an arch pattern.  The residual fit plot shows 
that the straight line model is acceptable for the corn data. 
 
MTB > plot 'res' 'fits'  
         _                           * 
         _ 
       10+ 
         _                                                      * 
 res     _                    * 
         _           * 
         _      * 
        0+                                             * 
         _                       * 
         _ 
         _ 
         _ 
      -10+ 
         _ 
         _             * 
         _ 
         _                                             * 
           ______+_________+_________+_________+_________+_________+fits     
              64.0      72.0      80.0      88.0      96.0     104.0 

 
 
The accompanying diagram contrasts an 
acceptable plot with two unacceptable plot.  
One shows an arch, where residuals are too 
low at high or low fitted values.  The other 
diagram shows a bowl, where residuals are 
too high at high or low fitted values.  Bowls 
or arches result if the relation of the response 
to explanatory variable is curvilinear.  
 
If this assumption is violated we go back to 
step 1 and reformulate the model to 
something other than a straight line. 
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3. Evaluate model. 
Next, we evaluate the error model that was used to estimate the parameters and likelihood 
ratios that will be used to calculate p-values (Type I error) from a statistical distribution 
(chisquare or t or F). 
These distributions assume: 

Fixed variance  (errors homogeneous) 
 Normally distributed errors. 
 Independent errors 

Unbiased estimate (errors sum to zero) 
 
In practice the first assumption is the most important. The second assumption is more often 
mentioned and often incorrectly diagnosed (i.e diagnosed before estimating parameters and 
computing residuals).  The third assumption is best diagnosed if we know the order in 
which samples were gathered or we know the spatial arrangement of samples.  The fourth 
assumption does not need to be checked when parameters are estimated by statistical 
packages that automatically produce unbiased estimates.  We will focus on the first two 
assumptions, unless we have information allowing us to diagnose the independent error 
assumption. 
 
To evaluate the fixed error assumption we again examine the residual versus fit plot.  If the 
assumption is valid the plot will show a horizontal band. The dispersion around zero will 
be uniform across the plot.  If the assumption is not valid the plot will show dispersion 
around zero changes from left to right in the plot, usually with an obvious cone, fan, or 
spindle pattern.    The residual fit plot for the corn data shows an acceptable band, with no 
evidence of change in dispersion going from left to right. The assumption of homogeneous 
error is acceptable for the corn data.   

 
 
The accompanying diagram shows acceptably 
homogenous residuals in idealized form, superimposed on 
the corn data.  The dispersion around the regression line is 
equal all along the line.  As a result, the residual versus fit 
plot shows a uniform band running from left to right.  
 
 
 
  

The next diagram shows a pattern of heterogeneity in 
which the dispersion increases from left to right along the 
regression line.  This pattern, which is common, will result 
in a cone opening out to the right in the plot of residuals 
versus fitted values.  The opposite pattern, of a cone 
opening out to the left due to high variance at small fitted 
value, is rare. 
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3. Evaluate model.  Normal Errors 
 
The next assumption is that the errors are normal. 
The histogram of residuals for the corn data looks 
“somewhat” normal, but there is evidence of skew 
to low values.  
 

Another diagnostic is comparison of the observed 
distribution to a normal distribution with the same 
mean and standard error.  
 

 
 
The most useful plot for diagnosing normality shows each residual, transformed to a 
normal score, plotted against the (untransformed) residual.   If the residuals are normal, this 
normal probability plot will exhibit a straight line rising from left to right. 

The normal probability plot for the Pcorn analysis shows some deviation from the diagonal 
at strongly negative residuals.  
  
3. Evaluate model.  Independent Errors 
This is a text example, we do not have information on spatial layout of samples, or on 
collection sequence. We will assume independent errors.  Just because our observations 
come from a single location, we do not assume that our data are ‘not independent.’ See 
Hurlbert (1984) for an example of this fallacy.  
 
3. Evaluate error model.  Conclusion.   
Residuals appear to be homogeneous with some departure from normal distribution. We do 
not have enough information to evaluate the assumption of independent errors.  
We may need to use an empirical distribution to compute p-values or confidence limits. 

MTB > hist 'res' 
 Histogram of res   N = 9 
  
 Midpoint   Count 
      -15       2  ** 
      -10       0 
       -5       0 
        0       3  *** 
        5       2  ** 
       10       1  * 
       15       1  * 

Add diagram 

MTB > nscores 'res' c7 
 MTB > plot c7 'res' 
 C7      - 
         -                                                       * 
         - 
      1.0+                                              * 
         - 
         -                                            * 
         - 
         -                                       * 
      0.0+                                   * 
         -                                  * 
         - 
         -                               * 
         - 
     -1.0+         * 
         - 
         -    * 
         - 
           --+---------+---------+---------+---------+---------+----res      
         -18.0     -12.0      -6.0       0.0       6.0      12.0 
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4. Partition df and SS according to model.   
Compute total degrees of freedom dftotal = n 1 = 9 1 = 8 
Partition dftotal according to model, using rules dfmodel = 1 regression line   
 dfres = dftotal   dfmodel   dfres = 8  1  = 7 
 

 
General linear model routines estimate the total sum of squares, partition it, and produce an 
ANOVA table with the partitioned SStot  

 
Here are  calculations from data equations.  

Data Equations for null model, Pcorn = mean(Pcorn)   
 Data = Model  + Res Res2   
 64.00 80.00 -16.00 256.0000   
 71.00 80.00 -9.00 81.0000   
 54.00 80.00 -26.00 676.0000   
 81.00 80.00 1.00 1.0000   
 93.00 80.00 13.00 169.0000   
 76.00 80.00 -4.00 16.0000   
 77.00 80.00 -3.00 9.0000   
 95.00 80.00 15.00 225.0000   
 109.00 80.00 29.00 841.0000   
     

Sums 720.00 720.00 0.00 2274.0000 = sum(res2)  
 720/9 = 80    
     

Data Equations for regression model 
Pcorn = 61.58 + 1.417*Psoil 

  

     
Psoil Data =   Model  + Res Res2   

1 64.00 63.00 1.00 1.0055   
4 71.00 67.25 3.75 14.0778   
5 54.00 68.66 -14.66 215.0578   
9 81.00 74.33 6.67 44.4566   

13 93.00 80.00 13.00 169.0000   
11 76.00 77.17 -1.17 1.3601   
23 77.00 94.17 -17.17 294.7724   
23 95.00 94.17 0.83 0.6907   
28 109.00 101.25 7.75 60.0097   

    2274.00 SS total, from above
intercept 61.5804  0.00 800.4305 = sum(res2) 800.43 SS residual
slope 1.4169   1473.57 SS improvement
     

 

Model Pcorn   o =  PSoil  · Psoil +   
Source Total   =  Psoil + Resid 
   df 9  1 =   1 + 7    

GLM Pcorn  o =     PSoil · PSoil +   
Source Total   =  PSoil + Resid 
   df 9  1 =   1 + 7 
  SS 2274 =   1473 + 800.4  
 SStot =   SSregr  + SSres 
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4. What is the evidence? Calculate likelihood ratio for the overall model 
 The overall (omnibus) model includes all of the terms in the model. 
 The analytic model isolates a single term for comparison. 
 The omnibus and analytic models are the same for single variable models.  
 
  LR = (SSres / SStotal) 

-n/2 
  LR = (800.4 / 2274)-9/2 = 110 
 
 The alternative model is 110 times more likely than the full (null) model. 
 
5. Mode of inference.   
 
This is an experiment under controlled conditions with a measurement protocol that could 
be repeated many times.  We expect the results to vary from run to run due to many 
sources of variation including measurement error.  From the law of large numbers 
(Bernoulli 1713)  we expect better and better estimates of the true value of the parameters 
as we increase the number of repeats.  This is called frequentist inference.  In other 
examples we will encounter two other forms of inference, priorist and evidentialist. 
   
5. State population and whether sample is representative.  
 
The population is a very large number of repeats of the 
experiment.  The population is represented by the 
model  

 Pcorn =  + PSoil · PSoil +  
 
Running the experiment thousands of times, while 
conceivable, is hardly feasible.  We are will use the law 
of large number to infer from the measurements we 
have (the sample) to the larger population (thousands of 
runs).  We will infer from our sample to the true value of the relation of phosphorus in corn 
to phosphorus in soil, as represented by the parameters  PSoil  and . This view of 
inference emphasizes the importance of the experimental protocol.  From this point of 
view, the population is all possible measurements, given the experimental protocol.  
 
The population is not an enumerable population. It is not all corn plants in the world nor is 
it all corn plants in Iowa, where the experiment was conducted.  It is not even all corn 
plants at the agricultural station where the experiment was conducted.      
 
Looking beyond the results from an experimental agriculture station, can we make and 
inference about the relation between phosphorus in corn and in soil in the state of Iowa?  
To do this, we need more information.  For example do the experimental results vary 
among the 17 soils types in Iowa ?  If so, we would have some basis for inference beyond 
the research station. 

Sample
n = 9

Population



 11

5.   Decide on mode of inference.  Is hypothesis testing appropriate? 
 If yes step 6, otherwise, calculate and report the likelihood ratio with parameter 

estimates. 
 
Based on the law of large numbers we can use the likelihood ratio to calculate the 
probability of drawing a correct conclusion from the sample.  LR -- > LR test ?  Yes. 
What is the cost (or risk) of drawing a false conclusion?  In an applied context, such as 
this, one cost is recommending an agricultural practice, such as adding phosphorus to soil. 
In such a context, we control our false conclusion rate at a fixed value.  By convention this 
is 5%.   
 
6.  State HA / Ho , test statistic, and  
There is one term in the model,  Psoil · Psoil 
The research hypothesis for this term is that phosphorus in corn depends on phosphorus in 
the soil, and hence variation in  Psoil · Psoil term.   In the absence of evidence for a relation 
of phosphorus in corn to phosphorus in soil, the null or state of science hypothesis is no 
relation hence no variance in  Psoil · Psoil term, beyond chance variation.   
 HA: var(Psoil · Psoil) > 0 
 Ho: var(Psoil · Psoil ) = 0 
Hypotheses about terms in the model are equivalent to hypotheses about the parameters in 
the model. 
 HA: var(Psoil · Psoil ) > 0 Equivalent to  HA: Psoil   0 
 Ho: var(Psoil · Psoil ) = 0 Equivalent to Ho:  Psoil = 0 
 
The test statistic will be the F-statistic, a variance ratio, which we will construct in the next 
step. 
 
The distribution will be the F-distribution, which is readily calculated. 
There is some evidence that the errors are not normal, so later we will evaluate whether we 
should obtain a randomized pvalue, free of assumptions. 
 
Tolerance for Type I error is 5% 
 
7.   ANOVA. Table Source, SS, df, MS, F-ratio. 
 
 
 
 
 
 
7. ANOVA:   Table  SS and degrees of freedom df. 
Move Source, df, and SS to table.  An ANOVA table is a GLM turned on its side. 

Establish relation of model to ANOVA table. 
GLM on left side of chalk board, with df and SS  
ANOVA table headings at top, to right. 
Fill in below GLM, then move Source, df, SS to table. 
Move Source, df, and SS to ANOVA table  
Complete calculations of MS, F,  

 Source df   SS MS F ----> p 
   PSoil 1 1473.6 
   Res     7    800.4  
   Total   8 2274.0 
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7. ANOVA:   Complete the ANOVA table 
 
MS  =  SS/df  
MSmodel = 1473.6/1 = 1473.6 
MSres = 800.4/7 = 114.34 
F  = MSmodel / MSres = 12.89 
 

 
Here are some additional statistics. 

r2  =  explained variance  =  SSmodel / SStot 
r is the correlation coefficient  
SSmodel / SStot  =  coefficient of determination, for any GLM 
1  coefficient of determination  =  coefficient of non-determination. 

 
Here is a summary, before moving on to the next step in the recipe. 

 
7. ANOVA: Calculate Type I error from F distribution. 

Packages compute and place the p-value in the ANOVA table. p = 0.00885  
 
  

 
 
 

Computational flow is left to right,  
  compute MS from SS and df in ANOVA table 
  compute F from MS 

 Source df   SS MS F ----> p 
   PSoil 1 1473.6 1473.6 12.89   
   Res     7    800.4    114.34 
   Total   8 2274.0 

The ANOVA table represents a sequence of computations from left to right. 
 
Factors are listed, based on the model that was written. 
 
df are listed, for each factor, and for the residuals.  dftot  =  dfmodel + dfres  
SStot is estimated as the sum of the squared deviations of the response variable 
from the grand mean of the reponse variable.  This is partitioned into a 
component for each factor in the model, and one residual component. 
 
MS means squares are computed for each source (model factors + residuals). 
 
F ratios are formed as ratios of mean squares MS 

 MTB > cdf 12.89 k3; 
 SUBC> f 1 8. 
 MTB > print k3 
 K3       0.991146 
 MTB > let k3 = 1-k3 
 MTB > print k3 
 K3       0.00885403 
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8.  Recompute  p-value if necessary. 
 Confidence limits and p-values are computed from statistical distributions 
(chisquare, F, t, and normal).  However, these calculations can be inaccurate if 
assumptions for these distributions are violated.  The distortion depends on sample size.  
As a rule of thumb distortion can be serious if n < 30, less serious if 30 < n < 100, and 
usually not serious if n > 100.    In this example n = 9, so violations are potentially serious. 
 
When  assumptions are not met, recomputed Type I error is worth considering if: 
     n small   (Yes, n = 9) 
     p near  (No, p = 0.00885) 
The p-value is far from  and hence recomputing the p-value can easily change our 
estimate of Type I error, but will not change our decision.  Randomized p-values generally 
differ from the theoretical p-values by less than a factor of two, rarely by a factor of 5 or 
more.  This choice is a matter of judgement, through experience with randomized p-values.  
In this case, a factor of 5 would leave the p-value less than 5%, and hence not alter the 
decision. So we might well judge at this point not to recompute the p-value.  But while 
good judgement will suffice in day to day practice, it is not adequate when we must defend 
our conclusion from critical scrutiny.  If we publish the result then we may well decide to 
compute a p-value free of assumptions, rather than appealing to personal judgement.  If we 
had to defend our conclusion in court, then we would certainly use a p-value free of 
assumptions rather than appealing to judgement. 
 
For the example at hand, it is of interest to find out whether our judgement was correct, 
that the p-value is so small that a better estimate won’t change the decision at a 5% level. 
 
In 4000 randomizations there were 27 instances of an F-ratio greater than 12.89. 
The randomized p-value is somewhat smaller than the 
p-value from the F-distribution.  The p-value from the 
theoretical distribution was high by a factor of  
   0.008854 / 0.00675 = 1.3 
 
This is consistent with experience with randomization, which shows that the recalculated 
p-value will generally differ from that from the F-distribution by less than a factor of 2 
(and rarely by more than a factor of 5).   
 
We will report the randomized p-value because it is free of assumptions.  But in the future 
we will be less likely to undertake randomization unless p is near . 
 
9. Declare and report decision about model terms.  
 p =  0.006750   (via randomization, hence no assumptions) 
 p <  = 5%    so reject Ho   : var(PSoil · Psoil) = 0 
 Rejecting the null on the variance is equivalent to rejecting the null on  
  the parameter, PSoil   0 
  
 

 MTB > let k2 = 27/4000 
 MTB > print k2 
 K2       0.00675000 
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9. Report statistical conclusion.  
  We reject the no-effect hypothesis in favour of stastistically significant increase in 

available phosphorus with increase in soil phosphorus  
 We report the test statistic, the sample size (or equivalent) and the p-value 
   (F1,7 = 12.89, p = 0.0085 by randomization) 
 
10. Report science conclusion. Interpret parameters of biological interest. 
 In this example our interest was in whether or not phosphorus content in corn was related 
to phosphorus content in the soil.  However, we can learn more from the analysis than just 
this yes/no decision about the relation.  
 
We begin by interpreting the slope parameter, for which the estimate is: ̂ Psoil = 1.4 
The observed phosphorus content in corn increases by 1.4 units for each unit increase in 
soil phosphorus.  Are the results consistent with amplification in corn relative to the soil? 
In other words, can we exclude the hypothesis (Psoil  = 1) that there was no amplification? 
 
To avoid repeated testing, we compute the confidence limits using the standard error of the 
estimate of the slope parameter  sb = 0.3947.   This estimate is provided by the statistical 
package.  It differs from the standard error of the mean.  
 
95% confidence limits for parameters.   
 P{Lower < Psoil < Upper} = 1   = 95% 
 Lower  =  ̂ Psoil   t0.025[7]  * sb  
 Lower =  1.4169      2.3646 * 0.3947  = 0.484 
 Upper  =  ̂ Psoil  + t0.025[7]   * sb  
 Upper =  1.4169  +    2.3646 * 0.3947  = 2.35 
 
 0.484 <  PSoil < 2.35   for   = 5%. 
 
These limits exclude the PSoil =0 hypothesis.  They do not exclude the hypothesis PSoil =1 
hypothesis. that available phosphorus increases in direct proportion to soil phosphorus.  
We cannot reject the hypothesis that  phosphorus in corn increases in direction proporation 
to phosphorus in soil  PSoil = 1.  
 
Confidence limits allow us to exclude several hypotheses, not just the null of no relation. 
 
For the sake of completeness, we report the regression equation with standard error of the 
slope parameter and sample size.  
 
  Pcorn  =  61.58  +  1.42  PSoil     sb = 0.3947, n = 9 
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