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Model Based Statistics in Biology.    
Part III.  The General Linear Model. 
Chapter 8    Statistical Inference with the General Linear Model 
Elementary statistics courses for biologists tend to lead to the use of a stereotyped set of tests: 
1 without critical attention to the underlying model involved; 
2 without due regard to the precise distribution of sampling errors; 
3 with little concern for the scale of measurement; 
4 careless of dimensional homogeneity; 
5 without considering the ideal transformation; 
6 without any attempt at model simplification; 
7 with too much emphasis on hypothesis testing and too little emphasis on parameter estimation. 

M.J. Crawley. 1993.  GLIM for Ecologists.  (London, Blackwell) 

 
 
 
 
 
 
 
   on chalk board 
 
ReCap Part I (Chapters 1,2,3,4) 
Quantitative reasoning: Example of fly 
heterozygosity, which combined  models (what is 
the relation of fly heterozygosity to altitude?) with 
statistics (how certain can we be?) 
 
ReCap Part II (Chapters 5,6,7) 
Data equations summarize pattern in data as a series of parameters (means, slopes). 
Frequency distributions, a key concept in statistics, are used to quantify uncertainty.  
Hypothesis testing uses the logic of the null hypothesis to make a decision about an 
unknown population parameter. 
Estimation is concerned with the specific value of an unknown population parameter. 
 
We have now concluded the first third of course. 
We  move on to the second third, the General Linear Model 

 
Wrap-up 
The general linear model has many advantages over learning a series of tests. 
It lends itself naturally to a problem solving approach based on biological concepts. 
We have already covered most of the component concepts.We will use a generic recipe 
that once learned, permits us to undertake a wide variety of analyses. 

Today: Introduction to the General Linear Model 
Begin with brief introduction to component concepts in a generic recipe. 
Then work through an example, using the generic recipe. 

ReCap.  Part I (Chapters 1,2,3,4) 
ReCap Part II (Ch 5, 6, 7) 
ReCap Part III 
8.1 Introduction 
8.2 Component concepts 
8.3 Generic Recipe 

Experimentation with order of presentation. 
1994 Components concepts Lec13 
 ANOVA example  Lec14 
1995 Component concepts  Lec13  
 regression example Lec14. 
1996 Component concepts Lec13  
  (in 20 minutes) then  
  regression example Lec14 
1997 Mon: Concepts L13 + ex L14 
 Wed: revisit L13 + ex L15 
 Went well. 
1998 Same as 1997. Lec 13 in  
 15 minutes. Went well 
2000 General material Lec 13 in 
 5 minutes.   
 Components of GLM in 15 min 
 Then to Lec 14. Went well 
2002 Lec 13 General Intro and components  

in 10 minutes, then Lec14 
2018 Add likelihood 
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8.1   Introduction 
Statistics are routinely presented as a collection of recipes in courses for scientists. The 
basic ingredients are null and alternative hypotheses, a statistic (F, t, or chisquare), a p-
value, and the declaration of a decision. The recipes focus on the inverted logic of the 
null hypothesis rather than on the biological relevance of the model, focus on p-values 
rather than the interpretation of parameters or the degree of uncertainty associated with 
each parameter estimate.  The recipes often ignore diagnosis of assumptions or evaluation 
of the sample relative to the population.  The recipe collection is huge. Widely used texts 
typically cover the following tests: one-sample hypotheses, two sample hypotheses, 
paired sample hypotheses, one-way ANOVA, multiple comparisons, two-way ANOVA, 
hierarchical ANOVA,  multiway ANOVA, regression, multiple regression, analysis of 
covariance (ANCOVA), polynomial regression, logistic regression, goodness of fit tests, 
and contingency tests.   The menus of widely used statistical packages (Minitab, SPSS, 
SAS, Systat) contain even longer lists of tests.  Choosing from such a long list is 
daunting, and as it turns out, unnecessary.  
 
 For problems in biology, 
statistical  analysis will usually 
entail some form of functional 
relation: How does some quantity Q 
vary as a function of another set of 
quantities X1, X2... etc ?  For these 
problems we can employ  model-
based statistics, which focus on a 
response variable in relation to one 
or more explanatory variables.  We 
will use the generalized linear model 
(Nelder and Wedderburn 1972, 
McCullagh and Nelder 1989), one of 
the major developments in statistics 
in the last quarter of the 20th 
century.  It allows analysis based on any of several error distributions.  We’ll begin with 
the general linear model, which assumes a normal error (Figure 8.1). The general linear 
model (GLM) has been available in the SAS software package since at least 1980, and is 
now available in any reputable stat package.  The generalized linear model (GzLM)  has 
been available in SAS since the first decade of this century, and is now widely available 
in code based (SAS, R) as well as menu based (SPSS) software.  This development of 
software allows the generalized linear model to be presented in introductory courses in 
statistics at the undergraduate level.  
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Advantages and disadvantages of learning model based statistics.  
The GLM is a way of thinking in quantitative terms, using a simple model structure that 
relate one quantity to another. 
 
The GLM has many advantages   
 
Learn unifying concepts, rather than lots of special cases. 
 Can see relation of one test to another 
 No need to learn special procedures for each type of test 
  For example, no need to learn ANCOVA as two separate types of analysis: 
   -control for another variable 
   -comparison of two regression lines 
 
More useful.  Can accomplish far more with general approach than by using a series of 
boxes.  Many data sets do not conform to the assumption for standard regressions and 
ANOVAs;  it is more effective to learn a general procedure to handle these problems, 
rather than learning one set of remedies for problems with regression, another for 
problems with ANOVAs, etc.  GLM is far more flexible in dealing with problems. 
 
Easier to learn in the long-run.  Though perhaps harder of first, because of the generality 
of the approach.  A generic recipe is harder to learn than a specific procedure test.  But a 
generic recipe is less work to learn than a whole collection of specific procedures. 
 
Disadvantages 
More abstract, harder to learn, at the outset. 
Software in the past was difficult to use with steep learning curve.  The GLIM package, 
for example could be described as "user-hostile." This is changing, as GLM and GzLM 
become available in packages that are intuitive and don’t demand a steep learning curve. 
 
Summary of advantages.  First, students learn unifying concepts rather than a sequence 
of apparently unrelated procedures.  Students can see the relation of one test to another, 
rather than having to learn special procedures for each topic.  For example, ANCOVA 
can be presented as two applications of the same model, rather than as two separate 
procedures, one for comparing slopes and one for statistical control of a regression 
variable.   Remedies for recurring problems (e.g., heterogeneous variances) are presented 
once, rather than several times in different guises.  The approach means that remedies can 
be learned, instead of memorizing specific  remedies for each test.  The mechanics of 
analysis are presented once, rather than different procedures for each test.  Students are 
able to accomplish more with the general linear model than by learning statistics as a set 
of named procedures.  For example, with this approach students can set up and execute 
the analysis of a response variable in relation to two categorical and a single regression 
variable.  There is no name for this analysis, and hence it is outside any list of tests.  This 
greater flexibility leads to better quantitative work in biology.  The GLM is a way of 
thinking in quantitative terms, using formal models that relate one quantity to another.  
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The material in the next two weeks will use the same generic recipe, applying it to special 
cases such as regression, ANOVA, t-tests.   
The GLM will become familiar through repetition. 
 
From over 20 years experience (B4605/B7220 at MUN) the model-based approach is 
readily grasped and executed by 3rd and 4th year undergraduate biology majors.  The 
presentation here begins by assembling the components learned so far – quantities, data 
equations, computing the fit of the model to the data, computing the improvement in fit 
due to an explanatory variable, either categorical or regression. After a discussion of 
assumptions for computing p-values in an ANOVA table (which tracks the improvement 
in fit due to explanatory variables), it moves to a generic recipe that will be applied first 
to regression (Chapter 9), the ANOVA (Chapters 10, 11) and ANCOVA (Chapter 14).  
 
 
 
 
 
 
 
 
 
 
 
8.2 Component Concepts 
 The General Linear Model is a sophisticated concept that substantially improves 
the quality of statistical analysis by non-statisticians.  We will be using component 
concepts that have already been covered in this course. 
 
Model based Statistics 
Data at the centre, three forms of summarization at the 
apices of the triangle.  The GLM summarizes data as a 
formal model.   To arrive at this model we begin with 
verbal model, often in the form of a question.  We can 
use graphical display to express our model and as aid in 
constructing the formal model.  We use the formal 
model (GLM) to undertake the statistical analysis, 
which quantifies uncertainty. 
 

Another look at 8.1 
 
Biologists agree that the list of current bird species is finite 
and rapidly approaching completion.  Do you think that a 
list of statistical tests is finite or could ever be complete ?   
Why or why not ? 
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8.2 Component Concepts 
Quantity 
A well-defined quantity has 5 parts: 
 procedural statement, name, symbol, values, and units.   
The GLM relates one variable quantity (response variable) to one or more other 
quantities (explanatory variables). 

 
Each symbol stands for a variable, which can take on several values via direct 
measurement, via calculation from direct measurements, or (in the case of an explanatory 
variable) via categories values fixed by experimental design (e.g. control, treatment). 
 
Variance of a quantity 
 We have already met the variance of a quantity.  It is the mean squared deviation 
from the average value of the quantity.   The true value of the variance of a quantity is 
often unknown, so an estimate is made.  The estimate is: 
 

Var(Q)  = (n1)1 (Qmean(Q) )2 
 
In this formula, you will recognize the sum of the squared deviations 
 

SS = (Qmean(Q) )2 
 
This is the fit to the simplest of all models, mean(Q) 
 
Model components and data equations  
The general linear model has three components: a response variable Y, a structural 
model consisting of one or more explanatory variables X1, X2, etc., and an error term.  
Table 8.1 shows equivalent expressions.  Each term in the model (response variable, 
explanatory variables, error) represents a vertical string (vector) of numbers.  
Consequently the symbolic expressions in Table 8.1 represents a series of data equations 
(see Chapter 5).  

Example: Plant growth is a function of nutrients and sunlight 
 Growth Rate = f  (nutrients, sunlight) 
 G = f  ( N, PAR   ) 

Table 8.1  Equivalent expressions of the general linear model. 
 Data = Model + residual 
 Observed = Expected + residual 
 Response = f( explanatory variables ) + residual 
 Y =   f( X1 + X2 +...) + error 
 Y =  i Xi +  

 
The explanatory variables can be on a nominal type of scale 

(ANOVA), on a ratio type of scale (regression), or both 
(ANCOVA).  The residuals are distributed normally. 
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Data Equations – Simplest model. 
 A data equation is written for each value of the response variable. The model in Table 
8.2  is the simplest possible: the variable of interest M is equal to fixed value  o the 
average value for the population.  Of course, we almost always do not know the true 
value of o. Our best estimate of o is the mean  = 59 g, computed from the data we 
have.  
 

 
Data Equations –Comparison of models.  Null and Alternative model  
 As scientists we are often interested in comparing models.    For example, does 
juvenile cod mass differ in vegetated and unvegetated habitats?  Chapter 5 showed 
another example - does genetic variability decrease with altitude?  We might expect that  
harsh environmental conditions (such as we encounter as we climb a mountain) would 
reduce variability.  This leads to a research hypothesis, that heterozygosity decreases with 
altitude.  The research hypothesis, in statistical jargon, is called the “alternative” model 
HA.  It is compared to a “null” model which summarizes the current state of science 
knowledge.  In the analysis of the fly heterozygosity data (Chapter 5)  the null model 
(current state of knowledge) was no change in heterozygosity with change in altititude. 
The alternative model was that heterozygosity H decrease as a function of elevation E. 
  H = E(H) +  population 
 H =      + residual sample 
 H  = Intercept +  E · E  + residual 
 H = 0.63  0.1298 ·  E + residual 
 
Heterozygosity is the response variable (on the left), elevation is the explanatory variable 
(on the right), and there is a residual calculated for each observation of heterozygosity. 
This model represents a series of data equations. Each data equation consists of a single 
observation (on the left), an expected value (parameters and explanatory variables on the 
right), and the residual or left over part, to make the equation balance out. 

Table 8.2 Data equations for 
measurement of the mass of 3 juvenile 
cod Gadus morhua. 
 
 Data = Fitted values + Residual 
 
 M = mean(M) +  
 
 55 g = 59 g + 4 g 
 60 g = 59 g + +1 g 
 62 g = 59 g + +3 g 
   Ho
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Data Equations – Comparison of models  
In the analysis of the oat yield data we used a model to describe oat yield Y as a function 
of group X (treated versus untreated). 

 Y =  0  +  x·X   
In this example the explanatory variable is on nominal scale.  It consists of categories.  
Equivalent notation 
 
 
 
 
 
 
 
 
 
 
Estimates of parameters 
We have already encountered the concept of estimation. 
It can refer to informal estimates, such as an order magnitude estimate of mass of an 

elephant               103 kg ?  104 kg? 
It can refer to an estimate from a formula, such as calculating a mean, a variance, or a 

standard deviation.  
It can refer to an iterative procedure, such as a least squares estimate or the maximum 

likelihood estimate we saw in Lab 3.  
In statistical analysis with the GLM, we will be using the formal machinery of 

estimation (least squares) to calculate the "best" estimates of means and slopes, 
according to a least squares criterion.  For non-normal error structures (GzLM)  
we will be using iteratively reweighted least squares or maximum likelihood 
estimates.  We will let the statistical package  do the work for us. 

The most commonly estimated parameters are means, slopes, and proportions and 
odds ratios. 

 
Evaluation of residuals.  We have seen that to use a statistical distribution (t, F, 
chisquare, normal) to calculate Type I error (the p-value) we need to make assumptions.   
We will rely on graphical displays to evaluate the assumptions (Chatfield 1998; Gelman, 
Pasarica & Dodhia 2002). The statistical literature warns against statistical tests to 
evaluate assumptions and advocates graphical tools (Montgomery & Peck 1992; Draper 
& Smith 1998, Quinn & Keough 2002).  La¨a¨ ra¨ (2009) gives several reasons for not 
applying preliminary tests for normality, including: most statistical techniques based on 
normal errors are robust against violation; for larger data sets the central limit theory 
implies approximate normality; for small samples the power of the tests is low; and for 
larger data sets the tests are sensitive to small deviations (contradicting the central limit 
theory).  In particular we will not adopt the mistaken practice of checking the response 
variable for normality.  Instead we will obtain residuals to evaluate assumptions.  Refs in 
Zuur et al 2010. 

Measurements = Model + residual 
 Q = f(X) + residual 
   f(X) means "function of X" 
 
 Q = E(Q) + residual 
   E(Q) is estimate of the true value f(X) 
 
 Q = bo + bX X + residual 
   bo b1 are estimates of parameters 
 
 Q =  +  X + residual 
   hats over parameters also signify estimates 
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Units, Dimensions, and Model Interpretation 
 Units and  dimensions are typically not considered in the statistical analysis of 
data.  They should be.  The parameters (means and slopes) that result from statistical 
analyses are usually parametric quantities, with units and dimensions that depend on the 
units and dimensions of the measured variables being analyzed.  They are not simply 
numbers, which is how they are often reported.  A glance at the set of the three data 
equations for cod weights (Table 8.2) will reveal that the mean has the same units and 
dimensions as the  response variable, which appears on the left side of the equality sign.  
In a regression equation (Y =  + x X + residual) the intercept  must have the same 
units and dimensions as the response variable Y.  The residual term must also have the 
same units and dimensions as the  response variable Y.  The regression coefficient x will 
have the same units and dimensions as the ratio Y/X, in order for the equation to be 
dimensionally consistent.  In the heterozygosity example (Box 8.1), the slope x 
quantifies the altitudinal gradient in genetic variability in units of %/km. 
 There are several reasons why GLM parameters should be recognized as scaled 
quantities, rather than treated as simply numbers.  First, the rules for operations on scaled 
quantities, which differ from those for numbers, apply to parameters.  Two means can be 
added only if they have the same units.  The rules for rigid and  elastic rescaling apply to 
parameters, a fact that is not evident if parameters are treated as mere numbers.  
Erroneous calculations result if a parameter is treated as a number.  A regression 
coefficient that is an estimate of a  spatial gradient at a scale of 100 m cannot be used to 
calculate a gradient at another scale, unless that coefficient is rescaled according to its 
units and dimensions. 
 
From likelihood ratios to hypothesis testing   
Once we have a null and alternative model consistent with the data we can compare them 
as a likelihood ratio.  In chapter 5.4 we compared the likelihood of the gradient to the no-
gradient model.  The measure of deviation was SStot = 0.117 for the null model.  The fit 
improved for the alternative model. The deviation measure dropped to SSres = 0.0214.  
The observed improvement in fit was SSmodel = 0.1174  0.0214 = 0.096.  The likelihood 
ratio was (0.0214/1.1174)-7/2 = 453. The alternative model (gradient of  -0.1273/km) was 
450 times more likely than then zero gradient model.  Statistical practice in some areas 
science is moving toward reports such as this—a likelihood ratio with an effect size, such 
as the gradient in this case.  Likelihood inference (Edwards 1972, Royall 1977) is 
common in genetics and some areas of ecology (Burnham and Anderson 1998). 
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From likelihood ratios to hypothesis testing (continued) 
Hypotheses tests use the likelihood ratio to calculate a p-value that is routinely used in 
the Neyman-Pearson sense (decision for are against the null) and rarely if ever in the 
Fisher sense of a flexible guide for discarding the null.  So when should we use 
hypothesis testing?  There are two reasons.  The first is when we need to consider Type II 
as well as Type I error, and thus, the balance between the two in designing an 
experiment.  The second reason is prevailing practice IF we can justify the use of 
hypothesis testing.  The justification is whether we can define a population to which we 
are inferring (Fisher) or whether we can define chance from a repeatable measurement 
procedure (Hacking).  In experimental work, with a well defined protocol repeatable by 
others we have a justification.  In observational studies where the number of uncontrolled 
variables is large we may well choose to likelihood inference rather than try to defend our 
measurement protocol as repeatable (Hacking) or as a sample from a population of 
infinite repeats of the study.  In this course we will make that choice early in our analytic 
procedure. 
 
Hypothesis testing 
 In this course we will be using a generic recipe for GLM based statistical analysis.  
This recipe incorporates the generic recipe for hypothesis testing.  The test statistic will 
be the F-statistic, the ratio of two variances.  These variances will be obtained by 
partitioning the response variable Q into two components, that due to the model, and that 
remaining (the residual) 
 Data   = Model  + Residual 
 Var(data) = Var(Model) + Var(Residual) 
 
 F = var(model) / var(residual) 
 
We will use the F distribution to calculate the long run probability of any value of the F-
ratio, given the degrees of freedom in the model and the degrees of freedom remaining in 
the residual. 
 
Estimation and Confidence Limits 
Hypothesis testing is the prevalent mode of statistical analysis in biology. 
Estimation and confidence limits are more informative. 
 Restore attention to structure of model, including units and dimensions. 
 Allow exclusion of multiple hypotheses, not just the null hypothesis. 
 
For example, in examining the relation of metabolic rate to body size, the null hypothesis 
is biologically irrelevant.  We are more interested in excluding a 1:1 scaling than we are 
statistical rejection of the hypothesis of no relation. 
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8.3 A Generic Recipe for Applying the General Linear Model 
The general linear model is not part of the traditional undergraduate curriculum for 
biology students.  However, it is readily grasped by third and fourth year undergraduates 
in biology when presented as a procedure for analysis, rather than a set of formulas to 
memorize.  Students with limited backgrounds in mathematics and statistics can 
successfully apply the following generic recipe (Table 8.3) to novel data sets and to their 
own data. 
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Table 8.3 Generic Recipe for Statistical Inference with the General Linear Model. 
1. Construct model.  Begin with verbal and graphical model. 
  Distinguish response from explanatory variables 
  Assign symbols, state units and type of measurement scale for each. 
  Write out statistical model. 
2. Execute model Place data in model format, code model statement.  
    Compute fitted values from parameter estimates. 
    Compute residuals and plot against fitted values. 
3.  Evaluate the model, using residuals. 
  If straight line inappropriate, revise the model (back to step 1). 
  If errors not homogeneous, consider using generalized linear model (step 1) 
  If n small, evaluate assumptions for using chisquare, t, or F distribution. 
   residuals homogeneous ?  (residual versus fit plot) 
   residuals independent ?  (plot residuals versus residuals at lag 1)  
   residuals normal ? (histogram of residuals, quantile or normal score plot) 
  If not met, empirical distribution (by randomization) may be necessary 
4. Partition df and SS according to model.  Write SS and df for each term in model. 
 State the full (null) and reduced (alternative) model 
 Calculate likelihood ratio for omnibus model. 
 If sufficient evidence for omnibus model Step 5, otherwise step 10. 
5. Define target of inference. Choose mode of inference: evidentialist, frequentist, priorist.   
 If priorist, see recipe.  If evidentialist, step 9. 
6. State test statistic, and sampling distribution (t, F. χ2, or Monte Carlo).  
 Fixed Type I error or Fisher sorting? 
7.  ANOVA: Table Source, SS, and df.  Calculate MS, F-ratio. 
   Obtain Type I error (p-value) from distribution (F or t). 
8. Recompute Type I error if necessary. 
 If assumptions not met compute Type I error by randomization if: 
   sample small (n < 30) and if Type I error  near fixed .  
9. Report statistical conclusion about fixed terms and factor contrasts in the model. 
 For frequentist inference report either the ANOVA table, or F-ratio (df1,df2),  
 or t-statistics (df=1) and Type I error (not ) for fixed terms and factor contrasts. 
10. Report science conclusions. Interpret parameters of biological interest  (means, slopes)  
 along with one measure of uncertainty (st. error, st. dev., or conf. intervals). 
 Use t or Monte Carlo distribution  to compute confidence limits as needed. 
 
The next chapters work through the generic recipe step by step for commonly used 
analyses in biology 
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Exercises 
1. List of key concepts for review and future reference. 
 ____model-based statistics    ____general linear model 
  ____response variable     ____structural model  
  ____data equations     ____expected value 
 ____true (population) value   ____estimate 
  ____null model    ____alternative model  
 ____goodness of  fit    ____analysis of variance 
 ____degrees of freedom   ____p-value of a variance ratio 
  ____hypothesis testing   ____assumptions for p-values 
 ____randomized p-value   ____generalized linear model 
 ____ANCOVA    ____link functions 
 
2. 


