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Model Based Statistics in Biology.    
Part III.  The General Linear Model. 
Chapter 11   Review of GLM, Single Explanatory Variable 
 
 
 
 
 
 
 
 
 
 
 on chalk board 
 
ReCap Part I (Chapters 1,2,3,4) 
Quantitative reasoning: Example of scallops,  
which combined  models (what is the relation of scallop density to substrate?)  
with statistics (how certain can we be?) 
ReCap Part II (Chapters 5,6,7) 
Hypothesis testing uses the logic of the null hypothesis to make a decision about an 
unknown population parameter. 
Estimation is concerned with the specific value of an unknown population parameter. 
ReCap (Ch 9, 10) The General Linear Model is more useful and flexible than a collection 
of special cases. 
Regression is a special case of the GLM.  We saw  examples where the explanatory 
variable X was fixed and where the explanatory was measured with error. 
ANOVA is another special case of the general linear model.   
The relation of the  response to explanatory variable is expressed as set of means.   
Factor consists of fixed effects or random effects.  For the fixed effects, interest is in the 
source of the differences.  For random effects, interest is in whether there is variance 
among groups, above and beyond variance within groups. 

  
Wrap-up.  
 
The model based approach in this course fosters sound diagnosis  (e.g. residual versus fit 
plots).  It points to improved therapeutics (e.g., model revision). It avoids ill-founded 
‘cures’ including those that do more harm than good. 
Commonly used analyses in biology are special cases of the GLM (See Table 11.1). 
 
 
 

Today: Review of the  GLM, Single Explanatory Variable.  

ReCap.  Part I (Chapters 1,2,3,4) 
ReCap Part II (Ch 5, 6, 7) 
ReCap Part III (Ch 9, 10) 
11.1  Model Based versus Ritual Statistics 
11.2  List of Terms 
11.3  Commentary on Generic Recipe 
11.4 Review Questions 

Table 11.1 at end 
+ In class worksheet 
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11.1 Ritual Statistics 
In February 2014, George Cobb, Professor Emeritus of Mathematics and Statistics at 
Mount Holyoke College, posed these questions to an American Statistical Association 
discussion forum: 
Q:Why do so many colleges and grad schools teach p = 0.05? 
A: Because that’s still what the scientific community and journal editors use. 
Q:Why do so many people still use p = 0.05? 
A: Because that’s what they were taught in college or grad school. 
 
Cobb’s concern was a long-worrisome circularity in the sociology 
of science based a yes/no decision at  p<0.05: 
“We teach it because it’s what we do; we do it because it’s what we teach.”  
 

Ronald L. Wasserstein & Nicole A. Lazar (2016) The ASA's Statement 
on p-Values: Context, Process, and Purpose, The American Statistician, 70:2, 129-133, 

 
p < 0.05  is not the only example of  rituals learned and then taught. 
Here are several widely held beliefs and rituals that persist because they are taught. 
Exhibit A. ‘Check assumptions before undertaking statistical analysis’  X 
Exhibit B. ‘Use hypothesis testing to check assumptions.     X 
Exhibit C. ‘Reject the null (p<0.05) and accept the alternative hypothesis  X 
Exhibit D. ‘Accept the null hypothesis (p > 0.05)      X 
Exhibit E. ‘Compute the power of a test if the null hypothesis is accepted’  X 
Exhibit F ‘Your analysis is pseudoreplicated.’      X 
 
Practices learned by reviewers and examiners several decades ago persist today. 
Here are some examples BDC (Before Digital Computers)   
 
Exhibit G. ‘Use a  non-parametric test if your data do not meet the  
 assumptions for ANOVA or regression’      BDC 
Exhibit H  ‘Use randomization if your data do not meet assumptions’   BDC 
Exhibit I ‘Use an arcsin transform with percentages’     BDC 
Exhibit J ‘Use a square root transform for count data’     BDC 
Exhibit K ‘A two way ANOVA requires equal sample size in each cell’  BDC 
 
Practices marked X are misunderstandings or incorrect extensions of logically correct 
statements.   Practices marked BDC were sound advice in the days before digital 
computers, but no longer.  Just as computational power has improved medical diagnostics 
and therapeutics in the latter decades of the 20th century, so has best practice in statistical 
analysis been vastly improved by computational capacity and concomitant development 
of statistical theory.   BDC practices are the equivalent of a physician using 19th century 
rules of thumb instead of science based diagnostics and therapeutics developed in the 
later half of the 20th century.  
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11.1 Statistical malpractice 
Bad practices become malpractice when they do harm.  They violate a principle that 
should guide data analysis as much as the practice of medicine: primum non nocere - 
above all do no harm (to the patient or the data).   Practices that do harm include those 
that reduce the amount of information (reducing data to ranks, making sample sizes equal 
by throwing away data), that restrict the interpretive scope  (eliminating interaction terms 
when adopting rank based tests), that create uninterpretable models (as with arcsin 
transforms), or that discard interpretable parameters (means, slopes, odds) in favour of 
less informative statistics. 
 
11.1 A Tour of myths, misunderstandings, and malpractice.  
 
Exhibit A.   ‘Check assumptions before undertaking statistical analysis’ 

This is a common and persistent myth.  It is myth because the assumptions for 
computing p-values depend on the distribution of the residuals, not the distribution of 
the response variable.  Residuals can meet the assumptions even when ‘the data’ do 
not.   Checking assumptions is good practice, but only if the correct assumption is 
checked.   
 
Because the myth is common don't be surprised to hear it. What do you do if someone 
insists that you check your assumptions before computing residuals?    

 
First, state the assumptions correctly. 

  
Some people might still argue.  If they do, cite a text written by a statistician or well 
informed biometrician.  Here’s the phrasing to use,  with citations. 

 
 
 
 
 
 
 
 
 
 
 

Not all texts get it right. Some texts fail to state assumptions clearly.  Many texts fail to 
state that assumptions are checked by examining the residuals.  
 

 

"Type I error calculated from an F or t-distribution of course assumes 
that the residuals from my model were homogeneous and normal.  I 
examined the residuals, found they were normal, and so I used the p-
values calculated by the statistical package." 

"According to Neter et al (1983) Seber (1966) and Sokal and Rohlf (2012)  
the assumptions for computing p-values from F, t, and Chisquare 
distributions are that the residuals are normal, homogeneous, 
independent, and sum to zero." 
 
Neter, J., W. Wasserman, M.H. Kutner (1983).  Applied Linear 
Regression Models. Homewood Illinois, Richard D. Irwin, Inc. 
(page 31, 32, 49) 
 
Seber, G.A.F. 1966.  The Linear Hypothesis: A General Theory.  
London, Griffin. 
 
Sokal, R.R., F.J. Rohlf. 2012.  Biometry.  4th edition. Freeman. 
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Exhibit B. ‘Use hypothesis testing to check assumptions. 
This is a common misunderstanding that results in malpractice—arriving at the wrong 
conclusion.  The statistical literature warns against statistical tests to evaluate 
assumptions and advocates graphical tools (Montgomery & Peck 1992; Draper & 
Smith 1998, Quinn & Keough 2002). Läärä (2009) gives several reasons for not 
applying preliminary tests for normality, including: most statistical techniques based 
on normal errors are robust against violation; for larger data sets the central limit 
theory implies approximate normality; for small samples the power of the tests is low; 
and for larger data sets the tests are sensitive to small deviations (contradicting the 
central limit theory). 

Tests of normality reliably lead us to conclude that data are not normal when sample 
sizes are large, when violations are unlikely to affect the computation of p-values or 
confidence limits.  Conversely, tests of normality will be insensitive to violations at 
small sample sizes, when violations can have a large effect on computation p-values 
and confidence limits.  The practice of “checking the residuals first” reliably wastes 
time and provokes unnecessary remedies.  

Statistical tests of assumptions are illogical.   If the assumptions for hypothesis 
testing are in doubt for an analysis, why would we then use hypothesis testing with the 
same assumptions to test the assumptions?   
 
Draper and Smith 
 
Läärä, E. 2009. Statistics: reasoning on uncertainty, and the insignificance of testing 
null. — Ann. Zool. Fennici 46: 138–157. 
 
Montgomery and Peck 
 
Neter, JW, MH Wasserman, MH Kutner.1983. Applied linear regression models. 
Homewood Illinois, Richard D. Irwin, Inc.  
 
Quinn, G and MJ Keough. 2002. Experimental Design and Data Analysis for 
Biologists. p 110, 280 
 

Exhibit C.  ‘Reject the null (p<0.05) and accept the alternative hypothesis. 
This seems logical but alas, it is a fallacy called denying the antecedent. 
1.  If Ho then not HA 
2.  Not Ho (at p < 5%) 
3.  Therefore HA 
There are several reasons that Ho can be true.  The effect we observe, while not due to 
chance, may have resulted from something other than the experimental intervention. 
 

Exhibit D. ‘Accept the null hypothesis (p > 0.05) 
Another denial of the antecedent. 
1.  If p < 5% then reject Ho 
2.  p not < 5% 
3.  Therefore accept the Ho  
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Exhibit E. ‘Compute the power of a test if the null hypothesis is accepted’ 
We can correct the phrasing here to remove the fallacy. 
‘Compute the power of a test if the null hypothesis can’t be rejected.’ 
Once we have the results the sample size and variance are fixed, not variable.  
Consequently the power goes down as the p-value rises.  So post-hoc calculation does 
nothing more than recast the p-value as Type II error (Hoenig and Heisey 2001).  
These authors further demonstrate that calculation of minimum detectable effect size 
or of sample size to detect the observed effect do nothing to strengthen the analysis or 
modify the conclusion of no significant effect. Calculations of detectable effect and 
sample size are of course valuable in planning the next study. 
 
John M. Hoenig and Dennis M. Heisey. 2001. The Abuse of Power: The Pervasive 
Fallacy of Power Calculations for Data Analysis. The American Statistician  55(1); 19-
24. 
 

Exhibit F “Your analysis is pseudoreplicated.” 
This term (Hurlbert 1984) conflates two problems--spatially autocorrelated 
measurements (labeled “non-independent”) with malformed  F-ratios that fail to isolate 
a fixed effect from mixed effects, also labeled as “non-independent.”  Incorrectly 
nested F-ratios apply only to random factors.  If a reviewer uses the term, find 
someone who can write out the correctly nested F-ratios. If the F-ratios are correct, 
report it to the journal editor and ask for a new reviewer. 

 
Exhibit G. “Use a non-parametric test when assumptions are violated.” 

 Non parametric tests are just that—no parameters.  No means, no slopes, no odds 
ratios. And not even medians, which aren’t parameters.  Why would anyone do a non-
parametric test when a randomization allows us to report means, slopes, and odds 
ratios?  The answer “Because that was what they were taught.” 
A variant on this is ‘The means differ significantly (Kruskal Wallis test H = 38, 
p<0.001. The error here is to take this non-parametric test as an assumption free 
substitute for the tests on means.  The test does not compare means.  Nor does it 
compare medians.   
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Exhibit H.  “Use a randomization test if your data do not meet the assumptions for 
ANOVA or regression.”  
Non-parametric tests based on reduction of data to ranks were sound practice before 
1980, before personal computers made high speed computation widely available.  Back 
then, the benefits (ease of computation by hand, assumptions in computing p-values 
met regardless of data) outweighed the disadvantages.  Now that we have high speed 
computers, the benefits are gone and the disadvantages remain. 
Disadvantages 

 -loss of information in reducing ratio scale data to ranks; 
 -concomitant loss of power and increase in Type II error; 
 -loss of interaction terms, which can be as informative as main effects; 
 -no estimates of effect size. 

Computation by hand no longer matters.  With high speed computers it is no longer 
necessary to reduce data to ranks to obtain tests from of normal error assumptions.  We 
can use randomization to obtain a p-value on any statistic. 
   

Exhibit I:  Use an arcsin transform with percentages. 
Percentages are bounded at 0 and 1, so in principle residuals will not be homogeneous.  
In practice, the transform has little effect on the distribution of residuals for 
proportions around 50%.   Best practice is to examine the residuals.    
Why use a transformation that converts the response variability to an uninterpretable 
number if it is not necessary?  And if it is necessary (non normal residuals for 
proportions) why not use an appropriate error structure?  Be nice to you data. Don’t 
torture it.  
See:  Warton, David I., and Francis K. C. Hui. 2011. The arcsine is asinine: the 
analysis of proportions in ecology. Ecology 92: 3–10. [doi:10.1890/10-0340.1] 
 

Exhibit J:  Use a square root transform for count data. 
Count data are bounded at zero and so in principle residuals from the analysis of count 
data will deviate from normality and homogeneity.  In practice count data usually do 
deviate from homogeneity, especially if zero counts are present.  The variance will 
increase along with the mean of groups or fitted values, either in a 1:1 fashion (as with 
Poisson counts) or as a multiple of the mean (as with counts driven by non-random 
processes).   But while we can expect count data to have a heterogeneous rather than 
fixed variance, we cannot count on the square root transform to flatten the variance to 
a constant value.  Thus best practice is to examine the residuals, rather than invoking 
the square root transform whenever count data are analyzed.  If residuals are 
heterogeneous, then a square root transform might be tried if the data show the 
characteristics of Poisson counts: few counts above 10 or so and lots of zero counts.   
For counts with non-Poisson characteristics (zeros and counts above 10 or so) the 
square root transform will fail to impose homogeneity on the variance.  The log 
transform is a better bet, although there are still no guarantees.  The log transform has 
the advantage that back transformation of the average of logged data produces the 
geometric mean, which can be interpreted as a measure of central tendency on a 



 7

multiplicative scale.  Unfortunately,  the log transform creates problems of its own (cf 
Ch9.4).  For count data, best practice is to use an appropriate error structure (binomial, 
poisson, overdispersed poisson) within the computational framework of the 
generalized linear model.  Some simple examples will be shown in Part 5 of this 
course.  
 

Exhibit K:  A two way ANOVA requires equal sample sizes in each cell. 
The General Linear model allows correct estimates of unequal sample sizes in multiway 
designs.    
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11.2 Review of GLM Concepts 
 
Here are terms learned so far in the course.   
These terms cover most of the important concepts in this course. 
 
Response (dependent) and explanatory (independent) variables. 
 
GLM consists of a structural model (explanatory variables) and an error model. 
 
Regression (ratio or interval scale, continuous but also counts) variable 
vs Categorical (nominal scale) variable (factors with levels) 
 
Random vs fixed categorical variables. 
 
Arranging data into Model   Format. 
 
Parameters: Means, Slopes  µ  notation versus  notation 
  
Data Equations 
 
Variability: Variance, SS, df, MS, Variance ratio (F) 
 
Analysis of Variance: partition SS 
 
Likelihood ratios calculated from the full and reduced model. 
 
Type I and II error.     p-value (Type I error)   from pdf, from cdf 
 
Assumptions for p-values from cdf (4) 
 
Assumptions not met 
 
Hypothesis testing.   HA / Ho for parameters,  
     or for variance due to each term in model 
 
Statistical conclusion.   Conventional format: statistic, sample size or df, p-value). 
 
Science conclusion.  Report parameters, effect sizes, and interpret statistical results 
relative to the question that motivated the collection of data. 

Terms in bold on board 
Tried in 2003, worked OK 
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11.2 Review of Concepts 
 
Two-tailed vs one-tailed tests. This question arises frequently. 

 
Two-tailed tests cover extremely positive and extremely negative outcomes. 
The HA / Ho pair is written in terms of parameters or in terms of variances. 
 HA: X  0 Ho: X = 0 for parameters 
 HA: Var(X ·X) > 0 Ho: Var(X ·X) = 0 for variances 

 
The cumulative distribution function cdf for the t distribution reports the upper tail for 
positive values of t.  

 
 

Upper tail  p  =  10.972687  =  0.0273 
Both tails  p  =  0.027313 *2   = 0.0546 

 
The cdf for the F-distribution uses only its right tail for a two-tailed (non-directional) 
test.   

 
 
The two-tailed value is  p  =  10.945375  =  0.0546 
The results for the t and F distributions match in this case because t2 = F 

 
One-tailed tests HA / Ho pairs are also written in terms of parameters and variances.   
For example we might expect a positive relation between height of sons and their 
fathers. 

HA:  Hfather > 0  equivalent to  Ho: Var(Hfather ·Hfather) = 0 
 

To calculate the p-value on a one-tailed test of a parameter  
we use the upper tail of the t distribution:  p = 0.0273 
we cut the p-value from the F-distribution) in half:  p = 0.0546/2 = 0.0273 

 
The cumulative distribution function cdf for the t distribution reports the lower tail for 
negative values of t.  

 
 
 
Statistical tables give the two tailed p-value for the t distribution.   
The t.dist function in Excel behaves like the cdf function. 

 
Excel provides other functions for the t distribution. 
These behave in ways idiosyncratic to Excel.

MTB> cdf 2; 
SUBC> t 30. 
  2 0.972687 

R> pt(2, 30) 
[1] 0.972687 

MTB> cdf 4; 
SUBC> f 1 30. 
  2 0.945375 

R> pf(4, 30) 
[1] 0.945375 

MTB> cdf -2; 
SUBC> t 30. 
  -2 0.027313 

R> pt(-2, 30) 
[1] 0.027313 
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11.3 Commentary on the Generic Recipe for Hypothesis testing with GLM 
 
1. Construct  model 
 Statistics are a way of summarizing pattern in the form of a formal model.   
The simplest and most familiar is the computation of a mean--a single value that is taken 
as representative of a set of observations.  The General Linear Model is one of the most 
used.  It includes such familiar procedures as regression and ANOVA.  The GLM relates 
one (or more!) response variables to one or more explanatory variables. 
 
 Y  = o  + X1X1  +  .....   +  residuals 
 
 Y  = iXi  +  residuals 
 
 The GLM is flexible.  It allows the explanatory variables to be on a nominal 
(categorical) measurement scale, on a ratio type of scale, or on both. 
 Verbal and graphical models are useful in formulating a general linear model for 
use in analysis of data.  A typical sequence is to go from data to a verbal model, then to a 
graphical model, and finally to a formal model. 
 
 In setting up an analysis with the GLM it is 
important to  separate the response from explanatory 
variables.  One of the best ways to help someone who is 
having trouble "analyzing their data" is to ask them to 
identify their response variables, separating these from 
explanatory variables. 
 Both response and explanatory variables are 
quantities.  The should be defined by a procedural statement, assigned a name and a 
symbol, with units as well as numerical values. 
 
In learning to use the GLM it is important to write out response and explanatory 
variables, then state the model in words and picture before trying to write it.  With 
practice it is possible to write the model statement directly. 
 
When the GLM is used in inferential statistics, the model is written for the population.  
The convention of writing a parameters with a greek symbol is used to designate that the 
model applies to the population.  The parameter that pertains to a ratio scale variable is a 
slope (regression analysis).  The parameter that pertains to a categorical variable is a set 
of expected values, expressed as deviations from grand mean E(Y)  = o. 
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2. Execute model  
Place data in model format: 
  one column for response variable 
  one column for each explanatory variable. 
  categorical variables use numbers (or letters) for each level of a factor. 
Code the model statement,  
  Write model statement that follows sequence of terms in step 2. 
Obtain fits and residuals 
  GLM routines use the data to make estimates of the model parameters.  
These estimates are distinguished from the true (and unknown) values of the population 
parameters by placing a hat over the parameter. 
  o stands for the mean of the entire population. 

  o  stands for the mean computed from the sample. 
 Estimates are made according to two criteria:  either minimizing the squared 
residuals between the model and the data, or maximizing the likelihood of the estimate, 
given the data.  In many cases the latter works out to be the same as the former estimate.  
The mean, computed according to the familiar formula, is both a maximum likelihood 
and minimum deviation estimate of the true value.  Slopes for linear regression are 
estimated by minimizing the sum of the squared vertical deviations from the regression 
line.  In simple cases this is accomplished in one step with a formula.  In more complex 
cases, this is accomplished by iterative techniques such as curvilinear regression. 
 These estimates are used to calculate fitted values and from these the residuals. 
The residuals are plotted against the fitted values to evaluate the model (next step). 
 
Output from GLM routines. 
a.  Most routines provide residuals and fitted values as an output option. 
b.  Most GLM routines provide the parameters for the GLM 
  These consist of slopes and means, the latter expressed as deviations from the grand 

mean  o  
Parameter estimates in general linear 
model format:  
 
 
c.  Parameters can be estimated outside a 
GLM routine with functions that estimate slopes and means.  
 
Residuals computed from fitted values are plotted against fitted values. 
 
 
  

o  overall mean 
group  deviations from overall mean 
regression   overall slope 
o + group   means in each group 
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3.   Evaluate the model. 
A GLM consists of the response variables, the structural model (consisting of explanatory 
variables and parameters), and the error.   
 
We first evaluate the structural model. 
A bowl or arch in the residual plot indicates that the relation of response to explanatory 
variable is not a straight line.  If this proves to be the case the model needs to be revised 
so that the relation of response to explanatory variables is correctly represented.  The 
straight line assumption does not need to be checked if the GLM consists entirely of 
categorical (ANOVA) variables. 

 
Next, we evaluate the error model.  For the GLM, the error model is that of 
homogeneous, normal, and independent errors.  If these are violated we have two 
choices.  The first is to revise the model to an error structure that is more appropriate than 
normal (fixed) error.  Examples are logistic and poisson regression, for which the error 
increases in step with the magnitude of the fitted values.  These are special cases of the 
generalized linear model, which allows us to specify any of several error models.  The 
alternative course of action is to continue with the general linear model but use an 
empirical distribution of outcomes instead of a chisquare (or t or F) distribution to 
calculate probabilities and confidence limits.  There are many good reasons to adopt the 
first course of action (McCullagh and Nelder 1987, Myers et al 2002).  The first course of 
action allows inference beyond the data at hand. The second course of action restricts 
inference to the data at hand.   
 
Residuals and fits are used to evaluate assumptions. 
In this course we rely primarily on a normal error structure to estimate parameters and 
calculate Type I error from likelihood ratios.  This entails four assumptions:  
  

Another way of looking at this assumption (extra).   
Are the residuals associated with the model ?  We want to ensure zero covariance 
between the model and the residuals. 
 
Var(Y) =  Var(Model)  +  Var(Residuals)  +  Cov(Model, Residuals) 
 
Covariance is detectable as a curved pattern in the  plot or residuals against the 
fitted values, it does not occur as a simple positive or negative association.  If there 
is covariance, then the model is inappropriate and the variance estimates used in 
hypothesis testing will be in error. 
Another model should be used. 
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3.   Evaluate the normal error model. 
1.  Var(res) = constant.  Plot residuals versus fits, check for cones. 
2.  E(res) = 0   This will be automatically true for analyses in which parameters 
 are estimated from data, as in  most statistical packages, so no need to check. 
3.  Cov(resj resj) = 0   i.e., residuals independent. 
 This is checked by plotting residuals in some logical order,  
  such as order in which data were collected. 
 Equivalent check is to plot residuals against neighboring value 
  Create new column of residuals lagged by 1, then plot residuals vs lag(res) 
 This check can be extended to  multiple lags, not just lag 1. 
  This is accomplished with ACF command in minitab. 
4.  Residuals normal.  This is checked by  
 -looking at histogram of residuals 
 -checking the fit to normal distribution with rootogram 
 -checking fit with nscore(res) vs residuals (straight line if normal) 
 
In this course we use primarily graphic displays to evaluate the assumptions.  The reason 
for this is that statistical tests of assumptions perform poorly.  Statistical tests of 
assumptions are insensitive to violations at small sample sizes, which is precisely when 
violations can distort estimates of p-values.  Tests of assumptions become increasingly 
sensitive to minor violations at large sample sizes, which is when violations no longer 
distort estimates of p-values.   Statistical tests of assumptions seem like a good idea, but 
upon examination turn out to be a bad idea. 
 
4.  Partition df and SS according to the model.  Calculate LR = weight of evidence 

LR < 10.   Discard model 
10 < LR < 20   Dubious model 
20 < LR   Step 5 

 
5. Inferential mode.  
We have three choices. 
Evidentialist.  We report relative evidence as a likelihood ratio.  This mode of inference 
relies on the validity of the error model.  
Frequentist.  We report the likelihood ratio along with a Type I error rate.  This mode of 
inference relies on the Law of  Large Numbers: as sample size increases estimates 
converge on the true value of a parameter in a population.  The population can be finite, 
as with survey design, with random sampling from a known frame.  The population can 
be infinite, as with experimental design based on repeated use of  the same experimental 
protocol.  The prevailing mode includes a fixed Type I error rate.  In the absence of a 
clear reason to control Type I error rate, we use Fisher sorting to evaluate the evidence. 
Priorist.  We report a posterior probability based on a generalized likelihood ratio and a 
prior probability that is overt, public, and cumulative.  Sophisticated sampling (Markov 
Chain Monte Carlo) is no substitute for weak or poorly substantiated prior probabilities.  
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5. Decide on mode of inference.  Is hypothesis testing appropriate? 
Hypothesis testing (HA versus Ho ) is usually considered mandatory.  This view stems 
from R.A. Fisher. 
 

 
 
 
 
 
 
 

Fisher’s approach to null hypotheses was supplanted by the decision-theoretic approach 
of J. Neyman and R. Pearson.  This approach was criticized by Fisher.   has come 
increasingly into question.  By the mid 1990s M.R. Nester (1996) had collected over 125 
quotes against the use of hypothesis tests.  In 2019 the a statement from the American 
Statistical Association recommended against declaring statistical significance against a 
fixed Type I error rate.  The generic recipe separates the measure of relative evidence (the 
likelihood ratio), from the measurement of uncertainty by a Type I error.  
 
6.  If hypothesis testing is appropriate , state HA / Ho pairs..   
The alternative hypothesis is that the response variable is related to an explanatory 
variable.  This is usually the basis for undertaking an analysis, so it makes sense to write 
this first.   In the analysis of variance the HA / Ho pair is expressed about the variance due 
to a term in the model.  The hypothesis pair concerning a term in the model is equivalent 
to a general hypothesis about the parameters: that the means differ, the slopes are not 
zero, or that interactive effects are present. 
 
The logic of hypothesis testing with inferential statistics is that all possible outcomes can 
be divided into two categories: those included under the alternative hypotheses, and those 
not included.  These latter are labelled the null hypothesis.  The HA/Ho pair should 
include all outcomes.  For example, if the HA were that the expected value for a treated 
group exceed the expected value for a control group, then the Ho would be that the treated 
group was less than or equal to the control group. 
 
 = 5%     This is the conventional fixed criterion for statistics in biology.  It is an 
compromise between Type I and II statistical error.  Reducing the Type I error by making 
 smaller will raise Type II error, the chance of missing a true effect.  Repeated testing is 
on such criterion.  Harm to subjects (as in experiments with animals) is another.  The 
criterion used should be stated before undertaking a statistical analysis.  A convenient 
place to do this is in the material and methods section of a scientific report or thesis. 

Every experiment may be said to exist only in order to 
give the facts a chance of disproving the null hypothesis 

--R.A. Fisher 1935
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7. ANOVA – Report model results in ANOVA table. 
The ANOVA table displays the model vertically. 
 
 Y =  
The total degrees of freedom (sample size minus 1) are  partitioned according to the 
model statement.  This is easily done by hand. Computation of df by hand is a good way 
to check that the model statement is carrying out the analysis intended. 
 
The sum of the squared deviation of the data from the mean is partitioned according to 
the GLM written for the analysis.  The sum of squares to be partitioned is 
    SStotal =  Y2  n1(Y)2 
 
Completing the table. 
This is done in the following sequence: 
 
Write out the headings of ANOVA table 
    Sources df SS MS F 
Fill in sources 
Fill in df (these are partitioned according to the model) 
Add SStot to bottom of table. 
Add partitioned SS to the table from a computer print-out. 
Compute MS from SS/df, if not already done by the computer. 
Compute F from MS/MS, if not already computed. 
 
Once this sequence  becomes familiar, it is sufficient to undertake a quick paritioning of 
the degrees of freedom by hand, check these against the print-out, make sure the intended 
SS were printed, and compute MS and F-ratios if not already computed correctly by 
computer.   
 
Calculate Type I error. 
It is easier to calculate a p-value from a theoretical distribution than from an observed 
distribution generated by randomization.  p-values from F, t, chi-square and other 
distributions no longer need to be the approximate values obtained from tables.  Any 
good statistical package (e.g. Minitab, SAS) will allow you to calculate exact p-values 
from F, t, chi-square and other distributions.  These are more informative than critical or 
cut off values obtained from printed tables. 
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8. Recompute   p-value if necessary 
If the assumptions are not met, the remedy is to compute the p-value by randomization.  
This results in an observed distribution of outcomes from the data, when the Ho has been 
made true by randomizing the data so as to remove pattern.  Outcomes are tabulated as 
frequency distribution.  Then compute p-value of observed statistic (data not 
randomized).  Could this statistic, of this magnitude, have arisen by chance ? 
 
Recomputing is not always necessary in a lab setting. 
We ask a sequence of questions if assumptions not met. 
 dferr small  ?     
  If df > 100 little need to recompute p-value, even if residuals terrible. 
   the p-value won't change by much. 
  If 30 < df < 100 then may need to recompute if residuals terrible 
   the p-value may change 
  If df < 30 then recompute p-value if residuals terrible. 
 p  close to    ?  
  If p not close (e.g. twice or half ) then recomputation unlikely to 
  change the decision, even though the p-value is incorrect. 
 
Rcomputing – reporting results to a wider audience.   
In a public setting we need to provide evidence, not judgement.   
In other words, if we report p-values against a fixed criterion and we cannot reject the 
null using the F or t or chisquare distribution, then we need to take the time to compute 
the Type I error by randomization, noting whether it was close to the p-value with 
assumptions.  If similar take the randomized p-value as validation of the assumption 
based p-value.   Continue using the p-value based on assumptions for that response 
variable.   
  
9. Report statistical conclusion. 
 
In reporting the results from hypothesis testing it helps to remember that rejecting the Ho 
eliminates chance as an explanation for a particular outcome.  Eliminating chance does 
not, however, establish causality.  The relation of the response variable to the explanatory 
variable may be due to some factor other than the explanatory variable.  An example of 
this is a regression of food consumption against age.  Food consumption appears to rise 
with age in animals that increase in size with age.  Food consumption changes in more 
complex ways with age, after adjusting for the effects of size. 
 
The conclusion from a statistical analysis with the GLM should contain, at a minimum, 
the F-ratio, df, p-value, and whether the p-value was obtained from a theoretical 
frequency distribution or from frequency distribution  generated by randomization. 
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10.  Report science conclusion.  Interpret parameters of biological interest. 
Report the effect size: How far apart were the means ?  How strong is the rate of change 
estimated by a regression parameter?  
Report a measure uncertainty.   This can be a confidence limit, a standard error, or a 
standard deviation. Evaluate the statistical conclusion in light of effect size and 
uncertainty.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

At this point entertain questions brought in for 
answering. 
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Table 11.1  Commonly Used Tests, Based on the General Linear Model. 
  
 Response Explanatory  
Analysis Variable Variable Interaction Comments 
t-test  1 ratio  1 nominal Absent compares two means 
 
1-way  1 ratio  1 nominal Absent compares 3 or more means in 1 category 
ANOVA 
 
2-way  1 ratio  2 nominal Present tests for interactive effects 
ANOVA       compares means in 2 categories, if no interaction 
 
Paired  1 ratio  2 nominal Absent if compares 2 means in 1 category,  
Comparison     too few df controlled for 2nd category (blocks or units) 
 
Randomized 1 ratio  2 nominal Assumed compares 3 or more means in 1 category,  
Blocks     Absent* controlled for 2nd category (blocks or sampling units) 
 
Hierarchical 1 ratio  >2 nominal Absent nested comparisons of means 
ANOVA 
 
ANCOVA 1 ratio  > 1 ratio Present compares two or more slopes 
    > 1 nominal Assumed 
      Absent* compares means, controlled for slopes 
 
Regression 1 ratio  1 ratio  Absent tests linear relation of response to explanatory 
 
Multiple 1 ratio  >2 ratio Assumed tests linear relation to 2 or more explanatory variables 
Regression     Absent* relation expressed as a plane 
 
 *The interaction term is often assumed to be absent.  Including the interaction term allows us to check the assumption. 
    This is a good idea provided there are at least as many df in the error term as the interaction term. 
 
 
 


