
 1

Model Based Statistics in Biology.    
Part III.  The General Linear Model. 
Chapter 10.4   One way ANOVA, Random Effects 
 
 
 
 
 
 
 
 
 
 
 on chalk board 
 
ReCap Part I (Chapters 1,2,3,4) 
Quantitative reasoning: Example of scallops,  
which combined  models (what is the relation of scallop density to substrate?)  
with statistics (how certain can we be?) 
ReCap Part II (Chapters 5,6,7) 
Hypothesis testing uses the logic of the null hypothesis to make a decision about an 
unknown population parameter. 
Estimation is concerned with the specific value of an unknown population parameter. 
ReCap (Ch 9)  The General Linear Model is more useful and flexible than a 
collection of special cases. 
Regression is a special case of the GLM.  We saw  examples with the explanatory 
variable X fixed and with the explanatory measured with error. 
ReCap (Ch 10) ANOVA is another special case of the general linear model.   
The relation of the  response to explanatory variable is expressed as set of means.  When 
classes within a factor are fixed by experimental design, it is natural to investigate which 
classes are responsible for significant variation.  A priori (planned) comparisons are 
based on our knowledge of the reasons for collecting the data. These are more 
informative than a posteriori (after the fact) comparisons. 

 
Wrap-up.  GLM.  ANOVA.  Explanatory variable on nominal scale. 
Random factor.  Inference to a population of units instead of inference to fixed factor 
categories.   
 
 
 
 

Today:  ANOVA as a special case of the GLM.  
  Single Factor ANOVA - Random Effects 

ReCap.  Part I (Chapters 1,2,3,4) 
ReCap Part II (Ch 5, 6, 7) 
ReCap Part III (Ch 9) 
10.1  Single Sample t-test 
10.2  Two Sample t-test 
10.3  One way ANOVA, Fixed Effects 
10.4 One way ANOVA, Random Effects 
 Fixed versus random effects 
 Example: Scutum widths 

SRBX9_1.out 
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Introduction.  Random effects.  
Until today we have been analyzing our response variable relative to fixed effect factors.  
A fixed factor has categories, or levels, that we set to certain values in an experiment or 
levels that we choose in an observational study.  We infer only to those levels.  
Experimental examples are treated versus untreated (control) units, before versus after 
treatment of an experimental unit.  Examples from observational studies include day 
versus night, habitat types, and insect stages (larval, adult),  
A random factor has categories that we have not chosen, or that vary even after we make 
them as uniform as possible.  Examples are tanks in aquaculture, plots in agriculture, and 
individual organisms.  Inference is usually to similar units although inference can also be 
only to those units. 
 
The choice between random and fixed depends on how we define the contrasts among 
means.  Here is an example. A biologist carries out an experiment on the effects of 
nutrient enrichment on the growth of marine algae, at three different locations in the field.  
Then repeats the experiment two more times, so that each location is exposed to each 
nutrient level.  The nutrient factor is clearly fixed if nutrient levels are manipulated.  The 
location factor is usually random.  However, the location factor could be taken as fixed, if 
the biologist restricts inference only to the locations in the study.  Time is fixed if we 
expect time-dependent variation.  In this case we compare results from time 2 to time 1, 
from time 3 to time 2, etc.  Time can be random if we expect no trends and do not expect 
time-dependent variation 
 
Example.   
Data from Box 9.1 of Sokal and Rohlf 2012, p. 209.   
Does tick size, as measured by scutum width, differ among hosts (rabbits)? 
The purpose of the study is to measure the proportion of variation in tick size attributable 
to host.  Studies such as this are used to design manipulative experiments.  If variation 
among hosts is small, then we can use relatively few hosts in a future manipulative study. 
If variation is large, than we need to control this by increasing the number of host rabbits 
in a future manipulative study.  
 
1.  Construct model. 
 
What is the best test? 
What model do we use to analyze this data? 
 
Verbal model. 

Scutum width Wscut varies among hosts H (4 rabbits) 
 
Graphical model    

Plot showing Wscut as a function of H 
Model consists of 4 means, one for 
each rabbit. 

MTB> plot  'width'  'host' 

R> boxplot(Wscut~Host, data=TickSize) 
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1.  Construct model. 
 
What are the response and explanatory variables? 

Response variable is scutum width of tick larvae Haemaphysalis leporispalustris,  
Wscut = microns 
Explanatory variable is host, H = Rabbit A, Rabbit B, Rabbit C, Rabbit D 

 
Are the explanatory variables covariates (regression) or categorical ? 
 Categorical. 
 
Are the categorical variables random or fixed? 

Rabbits were a ‘random sample of the population of host individuals’ 
(Sokal and Rohlf 2012, p211). 

 
The data appear to be symmetrically distributed around the model (the means) so we will 
use a normal error model.  
 
Formal model Wscut = o + H ·H +  
 
2.  Execute analysis. 
Place data in model format:  
 Column with response variable, scutum width Wscut.   
 Column with explanatory variable,   Rabbit Host = 0 or 1 or 2 or 3 
 These are labels (categories), not numbers on ratio scale. 
 
Code the model statement in statistical package according to the GLM 

Wscut = o + H ·H +  
  

 
 (1|Host) denotes random factor 

 
The fitted values are the means in each of the four groups. 
The residuals are calculated from the observed and fitted values. 
 
2.  Execute analysis. 
For ANOVA, the parameters are contrasts among the group means. 
In this example there are 3 contrasts relative to the mean of the reference group. 
  

R> TSizeModel<- lm(Wscut~(1|Host), 
      data=TickSize) 

MTB> ANOVA ‘Wscut’ = ‘Host’ 
MTB> GLM ‘Wscut’ = ‘Host’; 
SUBC> fits c4; 
SUBC> res c5. 
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2.  Execute analysis. 
For ANOVA in the GLM format, parameters are o the mean of the reference group,  
and H for the contrasts with the other 3 groups. 
 
To estimate o 

             
 = 359.7 To estimate the mean for each group 

 +  · H  = 372.25 Hence    =   +12.55 
    354.40       5.33 
    355.31       4.4 
    361.33      + 1.6 
 
There are several different symbols for estimates.   
 Placing a hat over the greek symbol    
 Placing a bar over the symbol for the quantity, in the case of the mean scut 
 Using a roman letter (use b1 for estimate of H ) 

 
The same information is reported relative to one of the means, taken as the intercept. 

 
 

            Estimate    Std. Error   
(Intercept)  372.250      3.783   
HostB        -17.850      5.075   
HostC        -16.942      4.808  
HostD        -10.917      5.779   

 
 
 
 

MTB > describe ‘width’ 
              N     MEAN   MEDIAN   TRMEAN    STDEV   SEMEAN  
width  1     37   359.7     

MTB > describe ‘width’ ; 
SUBC> by ‘host’ . 
 
      host    N     MEAN   MEDIAN   TRMEAN   STDEV   SEMEAN  
width  1      8    372.25   373.00   372.25     7.36            2.60 
         2     10   354.40   353.00   353.75     11.92          3.77 
          3     13   355.31   354.00   355.00     8.92             2.47 
          4      6    361.33   366.00   361.33     15.27           6.23 

The symbol µW is also used for the parametric mean of the quantity W.  This 
notation is difficult to use with symbols having subscripts, such as Wscut for 
scutum width.  Similarly, the symbol  W

2 is used for the parameteric variance of 
the quantity W.  The estimate (derived from a sample) is sW

2.  This is another 
example of cumbersome notation that is difficult to use with subscripted symbols 
such as Wscut. 

R> summary(TSizeModel) 
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3.  Evaluate model.   
Structural model.   

No regression lines estimated in ANOVA so no need to check straight line 
Error model.  Homogeneity? 

Plot residuals versus fitted values. 

 
Homogeneity ? 
Residual versus fit plot shows vertical distribution of residuals to be about the same in all 
four groups.  So residuals are judged homogeneous. 
 
When this assumption is not met, the plot of residuals versus fits will often show left or 
right facing fans for any GLM, 
including regression and ANOVA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 MTB > plot 'res' 'fits' 
  
 res     - 
         -    * 
         -      * 
       15+                       * 
         -    * *                2 
         -    *                                                  2 
         -      3 
         -    2 *                                                2 
        0+      *                *                               * 
         -    2 2                                                * 
         -      2                                                * 
         -    * 
         -    * 2                                                * 
      -15+    * 
         -                       2 
         - 
         - 
           +---------+---------+---------+---------+---------+------fits 
       353.5     357.0     360.5     364.0     367.5     371.0  

For ANOVA, there are a 
limited number of fitted 
values, hence the plot is 
present at only a few points 
long the x-axis.  The fan 
pattern is the same in both 
plots, but vertical swaths are 
missing from the plot with 
categorical variables. 
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3.  Evaluate model.  
Error model  
Residuals normal ? 
 
The residuals deviate slightly from 
normality 
 
 
 

 The response variable shows greater deviation from a normal distribution 
 
 

 
If we evaluate the assumptions before calculating the residuals, we erroneously conclude 
that the residuals are not normal.  
 
4.  Partition df and SS according to the model 

Compute total degrees of freedom      dftotal = n  1 = 37  1 = 36 
Partition dftotal according to model, using rules 

 4 hosts                dfH = 4  1 = 3 
 dfres = dftotal    dfH             dfres = 36  3  = 33 

df denotes the degrees of freedom for each factor. 
 

 
 
 
 

MTB > hist ‘res’ 
MTB > hist ‘Wscut’ 

 
 MTB > hist 'res' 
   Histogram of res   N = 37 
  
  Midpoint   Count 
      -20       1  * 
      -15       3  *** 
      -10       4  **** 
       -5       8  ******** 
        0       5  ***** 
        5       6  ****** 
       10       6  ****** 
       15       3  *** 
       20       1  * 

 MTB > hist c1 
 Histogram of Wscut   N = 37 
  
 Midpoint   Count 
      340       4  **** 
      345       3  *** 
      350       6  ****** 
      355       2  ** 
      360       7  ******* 
      365       4  **** 
      370       4  **** 
      375       5  ***** 
      380       2  ** 

GLM  Wscut   =   o  +   H · H   +    
Source  Total     =  Host + Resid 

Each parameter that is estimated from the data uses up one degree of 
freedom.  A slope uses up one degree of freedom.  An explanatory 
variable consisting of n classes uses up n   1 df.  
1 df is lost in estimating the grand mean.  
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4.  Partition SS according to the model 
 

 

W scut

0

A B DC

•          • 
      • 
   •    • 

•          • 
     • 
   •    • 

•          •
      • 
   •     •

•            •
       • 
   •     •

Host

W scut = 0 + H·H + 
SStotal = SSHost + SSresidual

df: n 1 = ngroups 1 + n groups 

W scut

0

A B DCHost

W scut

0

A B DC

•          • 
      • 
   •    • 

•          • 
     • 
   •    • 

•          •
      • 
   •     •

•            •
       • 
   •     •

Host

= 359.7

+12.55
5.33 
4.4 
+ 1.6

H =

SStotal = Var(Wscut) · df

SSHost = Var(H) · df 

Ssresidual = Var(res) · df 
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4.  Partition SS according to the model 
 

Compute SStot = Var(Wscut )  ·  dftotal      
 1.  SStot  =  (n 1) *  Var(Wscut ) = 36 * 155.2  = 5586 
 2.  SStot =   Wscut 

2   n1 (Wscut )
2  = 4792797.3   371  · 13308.92  = 5586 

 

 
4. Calculate likelihood ratio for omnibus model 

How good is the evidence for differences in size of ticks, among rabbits? 
Full model:  Wscut = o + H ·H +  
Reduced model:  Wscut = o    +  

 
LR = L(o + H ;  Wscut )  /  L(o ;  Wscut )   
LR = (3778) -37/2 / (5586)-37/2 = 1387 

  
We have strong evidence (LR>1000) for variance in tick size among hosts. The model 
alternative model (variance in means) is over a thousand times more likely than the 
null model, no variance in means.  We continue to step 5. 

 
5.  Choose mode of inference. 
The goal of the research was an estimate of variance in size among hosts, relative to the 
total variance.  A measure of evidence along with an estimate of variance among hosts 
suffices.  Priorist inference is groundless in the absence a sound prior probability. Priorist 
inference is unecessary; a posterior probability (revised belief) is irrelevant to the 
research goal.  Similarly we have no need for frequentist inference to control Type I error 
nor any need to declare a decision at some stated level of Type I error.   
 
For this example (tick scutum widths) we are going to infer to a population of rabbits 
similar to those in this sample.  Conclusions from statistical inference apply to any study 
that uses the same measurement protocol to measure size of H. leporispalustris tick 
larvae on rabbits. 
 
5. State the population. Fixed versus random effect factors. 
We have data from only four rabbits.  We could be very cautious and define the 
population as "all possible measurement of scutum widths from ticks on these four 
rabbits only."   If we were to do this, then we have a fixed effects model that applies only 
to these 4 rabbits.  Of more interest is a random effects model, where we treat the rabbits 
as a sample of all possible rabbits.   

GLM  Wscut   =   o  +  H  · H   +    
Source  Total =  Host + error 
 n    37   = 1   + 3  + 33 
 df    36  =  3  +  33 
SS  SStot  =  SShost  +  SSres  
  5586 =  1808  +  3778 
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5. Choose mode of inference.  
In this case a measure of weight of evidence is sufficient. Inference to a population is 
valid because we can define a population based on the experimental units—similar 
rabbits.  We will report the likelihood ratio as a measure of evidence.  We will report the 
variance due to hosts as a percentage of the total variance.   
 
Here is a summary of the data equations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. State test statistic, sampling 

distribution, and use of Type I error if approprite. 
 
 The focus of the random effects analysis is the variance in parasite size among rabbits.  

The focus differs from fixed effect factors, where the HA/Ho pair is stated as contrasts 
among means.   Instead of calculating Type I error we will report a measure of 
evidence, the likelihood ratio. 

 
Full model:  Var(H ·H) > 0 
LR > 1 
 
Reduced model:  Var(H ·H) = 0 
LR = 1 
 
 
  

MTB > name c3 'fits' c4 'res' 
 MTB > print 'width' 'fits' 'res' 
  
  ROW   width       fits        res 
  
    1    380    372.250     7.7500 
…… 
    8     382    372.250     9.7500 
    9     350    354.400    -4.4000 
,,,,. 
   18     364    354.400     9.6000 
   19     354    355.308    -1.3077 
….. 
   31    348    355.308    -7.3077 
   32    376    361.333    14.6667 
….. 
   37     360    361.333    -1.3333 
 
sd2          =  12.462          7.092        10.242 
sd2 ·36 = 155.25   50.27    104.86 
SS     = 5589    1809     3775 

“The true group means deviate from the true grand mean, 
where there is variance in size, among hosts” 

“The true group means do not deviate from the grand mean, 
where there is no among host variance in tick size.” 
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7.  Report the p-value.  
 Not needed. 
 
8.  Recompute the p-value by randomization if assumptions are not met. 

Not necessary, the residuals were judged homogeneous and normal. 
 
9.  Report statistical conclusions.  

LR = L(o , H |  Wscut )  /  L(o |  Wscut )  = 1387 
The full model is1300 times more likely than the reduced (null) model. 

 The explained variance is R2 =  1808 / 5586 = 32% 
 
10.  Report science conclusion. 
The parameter of interest is the variance among the means.  How large is the variance 
among groups, compared to the total variance across all ticks? 
 
 
 
 
 
 
 
 
 
 
 
Among unit SS =   
1808 / 5586 = 32% 
 
 
At 32%, the among rabbit variability is more than negligible.   
Sokal and Rohlf (2012) list several biological processes that could generate among host 
variability: -the modifying influence of the host on ticks 
  -ticks on any one host are siblings 
  -differential selection on size of ticks, among hosts 
  -different geographic sources of ticks for each host 
From the biology of this species of tick, Sokal and Rholf  (2012) consider the genetic 
explanation (siblings on one host) to be the leading explanation. 
 

Fixed versus random effects  -  Notation. 
 
Fixed effects ANOVA.  Explanatory variable is fixed treatment. 
  This is written  Y = µ +  +    
  The fixed factor is shown as a greek letter  
Our interest is in contrast among means. 
 A priori contrasts are used in confirmatory analysis. 
 A posteriori contrasts are more exploratory in nature. 
 
Random effects ANOVA.  Explanatory variable is random. 
  This is written  Y = µ + A +   
   The random factor is shown as a roman letter A. 
Our interest is in variance in Y among categories. 


