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Model Based Statistics in Biology.    
Part III.  The General Linear Model. 
Chapter 10.1   Single Sample t-test 
 
 
 
 
 
 
 
 
 
 
 on chalk board 
 
 
 
ReCap Part I (Chapters 1,2,3,4) 
Quantitative reasoning: Example of scallops,  
which combined  models (what is the relation of scallop density to substrate?)  
with statistics (how certain can we be?) 
ReCap Part II (Chapters 5,6,7) 
Hypothesis testing uses the logic of the null hypothesis to make a decision about an 
unknown population parameter. 
Estimation is concerned with the specific value of an unknown population parameter. 
ReCap (Ch 9)  The General Linear Model is more useful and flexible than a 
collection of special cases. 
Regression is a special case of the GLM.  We have seen an example with the explanatory 
variable X fixed, with the explanatory measured with error, and for a non-linear 
(exponential and power law) relations of response to explanatory variable.   
 

 
 
 
Wrap-up 
The single sample t-test compares an observed mean to a population mean of no 
difference. 
The sample consists of random units (10 individuals in this case) for which a difference 
can be calculated. 
 
 
 
 
 

Today: 
Single sample t-test  as a special case of the GLM 

ReCap.  Part I (Chapters 1,2,3,4) 
ReCap Part II (Ch 5, 6, 7) 
ReCap Part III (Ch 9) 
10.1  Single Sample t-test 
10.2  Two Sample t-test 
10.3  One way ANOVA, Fixed Effects 
10.4 One way ANOVA, Random Effects 

Ch10_1a.xls 
Extra sleep(hyoscamine) 

Ch10_1b.xls 
Extra sleep (work in class) 

Ch10_2.xls 
Daphnia ages SRBx9_5.out 

Ch10_1b.xls  
Example to be worked in class, from 
data collected in class, using CI 

Move single sample t-test to goodness of fit chapter. 
Goodness of fit to chance. 
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Single Sample t-test. 
The t-test was developed over a century ago by W.S. Gossett, who worked for the 
Guiness brewery in Dublin, Ireland.  Gossett was concerned with the problem of small 
sample sizes in choosing the best yielding varieties of barley. Gossett worked out the 
formula for the standard error of the mean for small sample sizes, Gossett published the 
derivation under a pseudonym because his employers were concerned with the 
publication of trade secrets. 
    Student. 1908. The probable error of a mean. Biometrika 6: 1-25. 
 
Instead of barley data Gossett used physiological data on drug efficacy.  
Cushny AR, Peebles AR (1905). The action of optical isomers. 
II. Hyoscines. J Physiology 32:501-510. 
 

 
The research question was whether Drug A 
 (L-hyoscyamine) results in extra sleep relative to no drug, 
in 10 subjects.   Through a labelling error, Gossett reported 
the L-hyoscyamine data as dextro-hyoscyamine. 
 
R.A. Fisher, an applied statistician at the Rothamsted 
agricultural research station, appreciated the importance of 
Gossett’s derivation when cost of replication is high.  
Fisher used the data from Gossett’s publication in the first 
text in statistical methods (Fisher1925 Table 27) . 
 

1. Construct model 
Verbal model:   Drug A increases time slept. 
Graphical model: Compare the average of the sample to the average in a population 
where there is no effect of the drug.  
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Hours of sleep, no drug 

Average

No effect 

0.6 1.3  0.7 
3.0 1.4 -1.6 
4.7 4.5 -0.2 
5.5 4.3 -1.2 
6.2 6.1 -0.1 
3.2 6.6  3.4 
2.5 6.2  3.7 
2.8 3.6  0.8  
1.1 1.1  0.0 
2.9 4.9  2.0 
 
Control   DrugA  Diff 
Cushny.dat 
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1. Construct model 

Formal model.   
Verbal and graphical models guide us in constructing the formal (symbolic)  model. 

 
To start, we define the quantity of interest.  

 Hours of extra sleep for Drug A    T = TdrugA – Tcontrol 
This is the response variable 

 
Then we define the explanatory variables.  The explanatory variable here is Drug A 
versus a control, no drug.  Because we have measurements of extra sleep both with and 
without the drug in the same individual, we can reduce the effect of the variable to a 
single number, the difference in hours of extra sleep.  

  TdrugA – Tcontrol = βo   
βo  the value of the difference in a population where there is no drug effect. 
𝛽̂𝑜 is an estimate of βo  from a sample from such a population. 
𝛽̂𝑜 will differ from βo  due to uncontrolled sources of error. 

 
State type of measurement scale for response variable and explanatory variable. 
Variables Name Symbol Units Scale 
Response variable Extra sleep measured T hours ratio 
Explanatory constant Extra sleep in population βo hours ratio   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Having distinguished the response from explanatory variable, we can 
write the model in more abstract form 
 Formal Model     T = βo + ϵ 
 β0 is the mean value of extra sleep, if drug A has no effect  
 
This model, which compares an observed mean to a fixed value βo , is called a one 
sample  t-test. We can think of it as a goodness of fit test to a constant, zero extra sleep. 
  

Distinguishing the response from the explanatory variable is the fust step in 
deciding on the statistical analysis to use.   
 Response variable 
  if ratio                   then  GLM 
 Explanatory  variable 
  if single sample (class)  single population t-test 
  if two classes  t-test 
  if two or more classes (nominal)  then ANOVA 
  if ordinal   then ANOVA 
  if ratio  then regression 
  if ratio and nominal  then ANCOVA 
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2.  Execute analysis. 
We will use data equations to illustrate the calculation of the single sample t-test  
Place data in model format: Response variable T in a column  

 
Obtain fitted values.   

    Fitted value = average(T)  = 0.75 
 

Obtain residual values 
Residuals: Res = T – Fits 

 
34.43 = SStotal = ∑𝑇2 
28.81 = SSresidual =∑(𝑇 − 𝑇�)2 
  5.63 = The improvement in fit 

 
 
 
3. Evaluate the model. 
1. No slopes (straight lines) in this model, so no need to check straight line assumption. 
2. If n small, evaluate assumptions for normal probability model. 
2a. Homogeneous errors ?     
 Not applicable because there is only one sample at fitted value of 0.75 hrs. 
2b. Normal errors ? 

 
 
Residuals depart little from  straight line in 
the probability plot 
 
 
 
 
 

2c.   Independent errors?   Yes, if we take the values in the 
order presented.  
We see no trend in plot of residuals versus residuals at lag 
1 (neighboring residual). 
 
 
 
 
2b.  Errors sum to zero?  This assumption is met when parameters are estimated by least 
Statistical packages use estimation routines that result in errors that meet this assumption. 
  

hrs hrs Trt-Ctl fits res res2

treatment control T
1.3 0.6 0.7 0.75 -0.05 0.002
1.4 3.0 -1.6 0.75 -2.35 5.523
4.5 4.7 -0.2 0.75 -0.95 0.903
4.3 5.5 -1.2 0.75 -1.95 3.803
6.1 6.2 -0.1 0.75 -0.85 0.723
6.6 3.2 3.4 0.75 2.65 7.023
6.2 2.5 3.7 0.75 2.95 8.703
3.6 2.8 0.8 0.75 0.05 0.003
1.1 1.1 0.0 0.75 -0.75 0.563
4.9 2.9 2.0 0.75 1.25 1.563

Sum 0.00 28.81
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4. Partition df and SS according to model. 
 There are 10 observations, hence 10 df. Of these, one is lost upon estimating the 

value of the average difference βo  
 5.625 = SSmodel = 10*(0 – 0.75)2  

 28.81 = SSresidual =  Σ(T –T�)2 = 28.81 
 34.44 = SStotal  

4.  Calculate likelihood ratio. 
 LR = (28.81/34.435)(-10/2) = 2.4  
 The observed difference (0.75 hours) is only 2.4 times more likely than 0 extra hours. 
 There is little evidential support for the  alternative model.  
 
4.  State the full (null) and reduced (alternative) model pair 
 The research hypothesis is that the drugs differ in effect. 
  The average difference βo  differs from 0.  HA: βo ≠ 0 
  We consider both tails because it is possible the drug reduces sleep,  
  leading to negative values. 
 The null hypothesis is that the drug has no effect.  Ho : βo  = 0 
 
5. State sample and population 
The population in this case is all possible differences in time slept with and without the 
drug, given the experimental protocol, including type of drug and manner of 
administration of the drug. This is a hypothetical, not an enumerable population.  We 
could estimate the average difference (𝛽0 ̂) by running the experiment repeatedly, then 
taking the average value of these differences. The sample is considered applicable to any 
repeat of the experiment, conducted in the same way. 
 
5. Decide on mode of inference.  Is hypothesis testing appropriate? 
  Yes.  We want to infer to a population of repeated use of the drug.  We wish to avoid 

a false positive, resulting in prescribing an ineffective drug.   
 
6. State test statistic, its distribution (t or F), and tolerance of Type I error.. 
 
 State test statistic    F-ratio 
 Distribution of test statistic  F-distribution 
 Tolerance for Type I error  5% 
  

  GLM: T =  βo   +   ϵ 
 df  10 =   1 + 9 
SS  34.435 = 5.625 + 28.81 



 6 

7. ANOVA - Calculate df according to model. 
 Calculate  mean squares MS from SS and df 
  MSres  = 3.201   SS / df = 28.81 / 9 
  MSDrug =5.625 10(β�o – 0)2 = 10(0.75)2  
 Calculate test statistic   
  F  = 1.76   (MSDrug)/(MSres)  = 5.625 / 3.201  
  t  = 1.33 t2 = F 
 
The F-ratio will be large if the average difference between drugs is large. 
The F-ratio will be large if MSresidual is small 
 
7. ANOVA - Calculate p-value for terms in model. 
  

 Hence  p = 1 – 0.782  = 0.218 
    
 
  p = 2(1 – 0.891) = 2(0.109) = 0.218 
 
 
8.  Recompute p-value if necessary. 
 Assumptions met so no need to recompute Type I error. 
 
9. Declare and report decision about model terms (compare p to α).  
 That is, compare the observed statistic to a population of such statistics. 
  0.218 = p  > α   =  0.05         
 Report decision:   
 We cannot reject the null hypothesis of no effect for drug A 
   F1,9 = 1.76  p = 0.218 
 
 
 
10. Report and interpret parameters of biological interest. 
With this sampling effort and variability, we could have detected an increase of 1.29 
hours in time of sleep.     Any effect less than 1.29 hours would go undetected with this 
sampling effort and variability.   The study needs to be repeated to be conclusive. 
 
Extension.  What about Type II error? 
When we fail to reject the null hypothesis, we need to consider Type II error, that of 
failing to reject a false null hypothesis. Computing statistical power (1- Type II error) 
when the null hypothesis cannot be rejected provides no additional information. 
Statistical power is inversely related to the p-value: a test with a p-value of 0.10 has more 
power than a test with a p-value with 0.30.  See: 
Hoenig, J.M. and D. M. Heisey.  2001 The Abuse of Power: The pervasive fallacy of 
power calculations for data analysis.  The American Statistician 55: 19-24. 
 
 

MTB > cdf 1.76; 
SUBC> f 1 9. 
 0.782   1.76    

MTB > cdf 1.3257; 
SUBC> t 9. 
 0.891   1.3257    

Fig L10a
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Extension.  What about Type II error? 
If we are going to calculate what went wrong, we can calculate something more useful, a  
minimum detectable difference. We ask: What difference could have been detected, 
given the variance and the sample size?  To answer this, we set up a spreadsheet that 
calculates p-values from the ANOVA table.  We then increase the difference between 
treated and control by adding a constant to the 10 observed values of TDrug until the p-
value becomes significant.   Here is an abbreviated table of results, starting with an initial 
guess of 1hour instead of 0.75 hours. 
T = 0.75 hours  F = 1.76  p = 0.218 
T = 1.00 hours  F = 3.12   p = 0.111 too low, try 1.25 hours 
T = 1.25 hours  F = 4.88  p = 0.054 close, try 1.28 hours 
T = 1.28 hours  F = 5.12  p = 0.050 1.29 hours significant at 5% 
 
The minimum detectable difference was 1.28 hours, given the sampling effort and 
variance among subjects.  An increase in hours of sleep less than 1.29 hours may exist, 
but went undetected at 5% criterion. This example reminds us that we don’t “accept the 
null” when we can’t reject it.  
 
Why is the minimum detectable difference useful?  We can compare it to our knowledge 
of hours slept per day and consider whether an extra hour or so is biologically reasonable.  
Someone getting 5 hours per day might say yes.    So another experiment, with more 
subjects, should be considered before concluding there is no effect.   
 
In considering another experiment an even more informative estimate is the sample size 
needed to detect a difference, given the variance and contrast between means.  To do this 
we keep the observed mean at 0.75 hours and increase the sample size until the F-ratio 
becomes significant.   We start with an increase from n = 10 to n = 20. 
n = 10   F = 1.76 p = 0.218 
n = 20   F = 3.71 p = 0.0692  close, try n = 24 
n = 24   F = 4.49 p = 0.0451  close, but possibly too high, try n = 23 
n = 23   F = 4.30 p = 0.0501 
 
Assuming the same variance and difference in means, a sample size of 24 was needed to 
meet the 5% criterion.   The increase in sample size from 10 to 24 is certainly feasible.   
 
So can we just increase the sample size by 14 and add the new data to what we already 
have?  We can, but we cannot use our 5% criterion for null hypothesis testing on the 
augmented sample.  Why not?  For the same reasons that we protect ourselves from too 
many “significant” p-values by using Bonferroni corrections.  We are doing multiple 
testing on the initial sample size of 10.   


