
Model Based Statistics in Biology.    
Part II.  Quantifying Uncertainty. 
Chapter 7.6   Goodness of fit tests for count data 
 
 
 

 
 
 
 
 
 
 
 
 
ReCap (Ch 7.?) Goodness of fit tests compare the likelihoods of two models as a 
likelihood ratio, then use frequentist inference to declare a decision against a likelihood 
ratio of 1 (no difference).  

Wrap-up.  
Count data are analyzed with goodness of fit tests using either the traditional χ2 statistic  
  or the G-statistic  (twice the log of a likelihood ratio) 
 
Goodness of fit tests are used to compare an estimate to a theoretical value, such as a 
Mendelian ratio.  
 
Goodness of fit tests are used to compare two proportions (row by column contingency 
test). 
 
Goodness of fit tests can be used to compare an observed frequency distribution to a 
probability model. 

ReCap.  Part I (Chapters 1,2,3,4) 
ReCap Part II (Ch 5, 6) 
7.0 Statistical Inference 
7.1 Three modes of inference 
7.2 Inference with an Empirical Distributions 
7.3 Inference with Probability Models 
7.4 Parameter Estimates 
7.5 Confidence Limits 
7.6 Goodness of fit to count data  

Chisquare statistic 
G Statistic 
Extrinsic hypothesis: Mendelian Ratios 
Intrinsic hypothesis: Two-way Contingency Test 

Today:  Goodness of fit tests 

Data:  Ch16.xls data. 



Goodness of fit to count data- the Chisquare statistic. 
Count data is common in the life and environmental sciences. Count data is bounded at 
zero and so we cannot rely on a normal probability model to test hypotheses.  Instead 
we will use a χ2 distribution and goodness of fit statistic.  We’ll begin with the 
traditional  Chisquare  statistic. We’ll then  move to its modern equivalent, the G-
statistic.  
 
Example:  Gregor Mendel (1822-1884) a scientist, and Augustinian friar was one of the 
founders of modern genetics.  He crossed a pure strain of purple flowered pea plants 
with a pure strain of white flowered plants, to obtain F1 hybrids.  He then crossed the 
F1 hybrids with themselves.  In one experiment he scored 929 plants as having either 
white or purple flowers.  Does the observed proportion differ from the 3:1 proportion 
expected in the F2 offspring of the F1 hybrids? 
 
To test data against genetic theory, we 
calculate the Chisquare statistic X2, which is 
defined as the squared difference between 
the observed and expected value, divided by 
the expected value, then summed across 
classes.  The X2 statistic increases as the 
difference between the observed and 
expected value decreases toward zero 
(perfect fit).   
 

 
 
 
 
 

 
Following convention, we write the Chisquare statistic as X2 and so distinguish the 
statistic from the Chisquare distribution denoted by a greek letter as 2.  We use the 2 
distribution to evaluate whether a poor fit (large X2) is too large to be attributed to 
chance at a pre-set decision criterion, such as  = 5%. The 2 distribution, like the t- 
and F-distribution, depends on the degrees of freedom.  This is only to be expected, as 
the F-distribution is the ratio of two 2 distributions.  The t-distribution is a special case 
of the F-distribution, with df = 1 in the denominator.  
 
The X2 statistic, divided by its degrees of freedom, is a measure of fit similar to the 
mean squared error MSE used in an ANOVA table. 
 
 MSE  =  SSerr/dferr  =  MSerr   
 MSE  =  Var(res)  =  Var(Obs - Exp).  

  Observed Expected Difference2/Expected 
  Purple 705 929*(3/4) = 696.75 (-8.25)2 / 696.75 = 0.097686 
  White 224 929*(1/4) = 232.25 (+8.25)2 / 232.25 = 0.29306 
      Total 929      0.3907 = X2   

The reason for the 3:1 ratio is one 
of the major ideas in biology.  If 
you have forgotten the concept, or 
never took a biology course, the 
idea is easily looked up and easily 
grasped because you, like Mendel’s 
pea plants, inherit genes from two 
parents.   



 
Goodness of fit to theory - The Chisquare statistic. 
We use the 2 distribution with the appropriate degrees of freedom to compute the Type 
I error (p-value) on concluding that the observed ratio differs from genetic theory. 
 
If we could obtain a large number of repetitions of this experiment, would the value of 
X2  = 0.3907 be highly improbable? 
The probability of this large a value of X2 by chance alone is  
 p = 1 - 0.4681 = 0.5319 

 
  Excel 
 
 
 
 
 

 
We conclude that the 
deviation of the data 
from the 3:1 genetic 
model cannot be 
rejected at the 
conventional criterion  of  = 5%.   
The difference between the observed ratio of mutant to wild type offspring (705:224) 
and the theoretically expected value (3 : 1) is due to chance. 
 
Goodness of fit to theory.  The G-statistic 
Another measure of goodness of fit is the likelihood ratio Chisquare, written either as G 
or as G2. The G-statistic is based on the solid theoretical underpinning of likelihood 
(Fisher 1935) , which considers the likelihood of the model given of the data. 
 Unlike the Pearsonian Chisquare statistic that we just computed, the G-statistic 
can be used in complex analyses involving several explanatory variables.  The G-
statistic allows us to compute the improvement in fit of one model relative to another, in 
complex as well as simple models.  It allows us to compare the likelihoods of any two 
models, using any probability model (Normal, Binomial, etc). 
  

MTB > cdf 0.3907; 
SUBC> chisquare 1. 
      0.3907   0.4681 

Query:  Why 1 df ? 
Answer: We have two ratios but only one degree of 
freedom.  Once we estimate the proportion one type 
(e.g. purple) we can calculate the proportion of 
the other type from the overall proportion of seeds  

R/S+ > pchisq(0.3907,1) 
 [1] 0.4680683 
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Goodness of fit to theory.  The G-statistic 
 
The G statistic addresses the question “how likely is a parameter, given the data?”   
For Mendel’s pea data we ask “ how likely is an observed ratio of 705/224 = 3.15 : 1, 
compared to a Mendelian ratio of 3:1 purple to white peas? 
  
The likelihood ratio given 705 purple peas is 
 
The likelihood  ratio given 224 white peas is   
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In symbolic form the likelihood ratio is    LR
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For all the observed values the likelihood is: 
   LR LR LR LR LRtotal    1 2 3 4 ...  
When the fit is perfect ( f f/   1) the likelihood ratio becomes  LR= 1. 
 
Taking the logarithm of both sides will give us a sum to work with, rather than a 
product. When the fit is perfect ( ln( /  )f f  0) the log likelihood ratio is lnLR = 0. 
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The G-statistic is twice the log-likelihood ratio:  G =  2lnLR 
 
Here is the calculation of the G-statistic for the pea flower data. 
The observed frequency fi has two values, 705 and 224.  The expected frequency from a 
3:1 theory is f p Ni i  .   It has two value ¾ N and ¼  N. 

 
The evidential support for the data relative to theory is 0.1969, which translates into a 
likelihood ratio of exp(0.1969) = 1.2, a value well short of  LR > 20.  The Mendelian 
ratio of 3:1 is just as likely as the observed ratio:  705/224 = 3.147. 
 
  

  Observed  Expected       

  Purple 705 929*(3/4) = 696.75 705*ln(705/696.75) =  +8.29865 

   White 224 929*(1/4) = 232.25 224*ln(224/232.25) =  - 8.1017 

      Total 929     +0.1969 

      = +0.394 



Goodness of fit to theory. The G-statistic 
 
Goodness of fit tests take this result further by calculating the long run probability of 
this level of evidential support, if we were to repeat the experiment a very large number 
of times.  The two statistics that are used are the X2 statistic and the G statistic because 
both are known to be distributed according to the  χ2 probability model.   
Often, but not always, the G-statistic will be similar in value to the Chisquare statistic. 
For the Mendel pea data X2  = 0.391 and G = 0.394. 
 
G uses the ratio of the observed to fitted values (likelihood ratio).  In contrast, the 
Pearsonian Chisquare statistic uses the squared deviations of the differences between 
observed and expected values. 
 
The likelihood ratio LR or the support lnLR are measures of the evidence.   
A p-value is used to make a decision; it is not a measure of evidence. 
 
Goodness of fit to theory - Likelihood Ratio Test 
Could the G statistic we obtained be too large to be due to chance ?   
We have little reason to believe that it could, given almost no weight of evidence  
against the 3:1 ratio.  LR = 1.2 is very close to 1 and so w e would expect a p-value 
close to 50%. To check this we will apply the Generic recipe for hypothesis testing. 
1.  Population = ?  
     All possible outcomes, if the same experiment was carried out repeatedly. 
2.  ST = ?   The statistic is G 
3.  Ho:  LR = 1, G = 0   Data supports theory. 
4.  HA:  LR > 1, G > 0.   Data does not support theory. 
5.   = 5% 
  



6.  State distribution. 
To calculate the probability of the observed value of G we need a distribution of all 
possible outcomes. As always, we have two options.  One is to generate a distribution 
of outcomes by randomly assigning each of the 929 plants to a phenotype (white or 
purple) by chance.  We could do this by flipping a pair of coins:  if the outcome is 
HeadsHeads, then offspring are assigned to the white type.  If the outcome is anything 
else (HT TH or TT) offspring are assigned to the purple type.  Obviously we will not 
obtain exactly the same assignment to the two phenotypes each time we assign the 929 
offspring by chance.  But if we make the assignment repeatedly (and calculate the G 
each time) then we will obtain a distribution of our G-statistic when the data do fit the 
model of a ratio of 3:1. 
 The other option is to use the 2 distribution.  This is less work.  We will use this 
because we know from statistical theory that if we have a binomial (yes/no, 
purple/white) outcome with probability of p = 0.25 successes in 929 independent trials, 
and we compute G, that the statistic will be distributed as 2.   
7.  Calculate statistic.  G = 0.394 (above). 
8.  Calculate the p-value.  
We have only one degree of freedom because once we compute the expected frequency 
of white flowers  ( p N = 232.25) the expected frequency of purple flowers will not be 
free to vary.  It must be 929 - 232.25 = 669.75 
 
The p-value from the 2 distribution is   p = 1 - 0.4697 = 0.53 
 
What about assumptions for computing p-values from chisquare distributions? 
-We have too few residuals to undertake any diagnosis of homogeneity. 
-We assume inheritance of flower color in one plant is independent of that of 
another.  We can check the assumption of 929 independent measurements.  This 
could be checked by looking for runs of white or purple flowers in the data, based 
on neighboring plants.  A quick check, if neighbors are known, is to plot scores 
(0/1, y/n,  present/absent etc) against neighbors.
 
If we found some serious problem we should do the experiment again, as 
randomization won’t solve the problem of non-independent measurements.  
 
9.  Compare p to   to make decision. 
Using the 2 distribution (df = 1), we calculate that  
53% = p < α – 5% 
 
10.  Report decision with statistic,  sample size or df, and p value.  
We cannot reject the hypothesis that the observed frequencies fit a 3:1 ratio. 
G = 0.394  df = 1   p  =  0.53   



Pubescent Smooth
Serpentine 12 22 34
non-Serpentine 16 50 66

28 72 100

Data from Sokal and Rohlf 2012, Box 17.6

Goodness of Fit G.  Intrinsic Hypothesis – Two-way contingency test.  
Often we have no theory, such as a Mendelian ratio, to perform a test.  
We can always construct an intrinsic hypothesis based on comparisons   
The simplest is that one ratio (proportion) differs from another. 
 
Example.  Leaf Type. 
 
Data are leaf type of 100 trees found in 
two soil types in a 400 square mile 
area.  In this two-way table, where the 
total is fixed (N = 100) the statistic of 
interest is the cross product ratio. 
 

 
 
Does the CPRatio differ from the expected value (null hypothesis) of 1? 
 
1.  Population.   All possible outcomes, if the survey was carried out the same  

way repeatedly, in the same ecosystem. 
2.  ST.   The statistic is G, the non-Pearsonian chisquare. 
3.  Ho: CPRatio = 1 G  = 0  
4.  HA: CPRatio  1   G > 0  
5.   = 5% 
6.  State distribution. 
We assume the results were from 100 independent trials, and use the 2 distribution 
to compute Type I error on rejecting the null hypothesis, a CPRatio of 1. 

a c Equal fractions a/b = c/d
b d Equal fractions a/c = b/d

CPRatio = (a/b) / (c/d) = 1
CPRatio = (a/c) / (b/d) = 1

12 22 CPRatio = (12/16) / (22/50) = 1.705
16 50 CPRatio = (12/22) / (16/50) = 1.705



7.  Calculate statistic.  G2 = 1.332 
Texts show several ways of computing G2for a contingency test. 
 
Here is a calculation of the statistic 
based on proportions of smooth to 
pubescent (28:72) and serpentine to 
non-serpentine (34:66) to obtain the 
expected proportion and expected 
frequency in each of the 4 cells of the 
table. 
For Serpentine/Pubescent, the expected proportion is 100*(28/100)*(34/100) 
 
Another way to calculate G  is to work sequentially beginning with a null model, 
the fit to a single value. 
 
Here is the fit to the null model, 
the average (100/4 = 25) 
 
 
 
Here is the fit to the relative 
proportion for leaf type. 
 
 
Here is the fit to the relative 
proportion for soil type. 
 
 
Combining these we have an 
account of the degrees of freedom, 
of the fit G2, and of the change in 
fit G2 as we add terms to the 
model.  
In this table the p-value is computed for the improvement in fit G.  The intercept 
is the fit to a single value. The improvement in fit by adding leaf type, relative to 
the intercept was G = 31.79 - 11.75 = 20.039.   
 
The degrees of freedom are calculated in just the same way as a two-way ANOVA: 
 (df = 2-1) for leaf type with two categories. 
 (df = 2-1) for soil type with two categories. 
 (df = 1*1) for the interaction term  

Leaf*Soil f fhat resid f*ln(f/fhat)
Serp/Pub 12 9.52 2.48 2.778
Serp/Smooth 22 24.5 -2.48 -2.350
NonS/Pub 16 18.5 -2.48 -2.306
NonS/Smooth 50 47.5 2.48 2.544

100 0.666
G 2  = 1.332

Intercept f fhat resid f*ln(f/fhat G 2 

Serp/Pub 12 25 -13 -8.808
Serp/Smooth 22 25 -3 -2.812
NonS/Pub 16 25 -9 -7.141
NonS/Smooth 50 25 25 34.657

100 15.897 31.79

Leaf f fhat resid f*ln(f/fhat G 2 

Pubescent 28 50 -22 -16.235
Smooth 72 50 22 26.254

10.0194 20.039

Soil f fhat resid f*ln(f/fhat G 2 

Serpentine 34 50 -16 -13.113
non-Serpentine 66 50 16 18.324

5.21117 10.422

Source df G 2 G 2 p
Intercept 1 31.79
Leaf 1 11.75 20.039 0.00001
Soil 1 1.33 10.422 0.0012
Leaf*Soil 1 0 1.332 0.2484



7.  Calculate statistic. 
For those familier with ANOVA tables, we see that a contingency test has the same 
structure as a two-way ANOVA.  The contingency test is interpreted in the same 
way as the interaction term in a two-way ANOVA. 
 
There are some important differences however.  First, we are working with a new 
table, the analysis of deviance (Anodev) table, instead of an ANOVA table leading 
to an F-statistic. Second, we are working with proportions, not with differences, as  
we did with ANOVA tables.  Third, we are no longer assuming a normal error as 
with ANOVA tables.  In the Anodev table above the calculation of Type I error (p-
value) from the 2 distribution assumes a Poisson error.  Third, we no longer need 
a residual term to judge improvement in fit, because we now take improvement as 
the reduction in G, not as a ratio (as with the F-statistic).   
 
In a later chapter we will skip the laborious calculations and simply write the 
model, execute it, and obtain the Anodev table directly. 
 
8.  Calculate the Type I error (p-value).  
The p-value from the chisquare distribution is 
   p = 1 - 0.752 = 0.248 
Using the 2 distribution with df = 1, we calculate that if the data do indeed fit the 
model of equal proportions (CPRatio = 1), the probability of a G-statistic greater 
than 1.332 is 25% if we were to run the study many times.  
 
What about assumptions for computing p-values from 2  distributions ?
We have too few residuals to undertake any diagnosis of homogeneity. We might 
be able to check the assumption of 100 independent trials, if we had the data sheets 
from this experiment.  To check independence in the order that data was taken, we 
would look for runs of one leaf type in the data, based on neighboring 
observations, or perhaps neighbour vs 
distant trees.   
 
A quick check is to plot scores (0/1, y/n,  
present/absent etc.) against neighbors. 
 
If we found some serious problem we 
should do the experiment again. 
 
9.  Compare p to   to declare decision. 

 0.25 = p >  =  5% 
The Type I error is too high to reject the 
“null” hypothesis, that CPRatio =1.   
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10.  Report decision with statistic,  sample size or df, and p value.  
 We cannot reject the hypothesis of equal proportions, CPRatio = 1.    
 G = 1.332,  df = 1,  p  =  0.25    
____________________________________________________________ 
 
Extensions. 
 
1.  Goodman (1964) presents a simple method for computing the confidence limits 
on a cross-product ratio.  Goodman, L.A. 1964.  Journal of the Royal Statistical 
Society. Series B (Methodological) 26: 86-102. 
 
Calculate the confidence limits for the leaf type data. 
What cross-product ratios can you exclude, even though the null hypothesis cannot 
be excluded? 
 
2.  Set up a structured calculation (as in a spreadsheet) that allows you to  
calculate the p-value for the leaf type data, holding effect size (leaf type proportion 
and soil proportion) constant, while allowing sample size to change. What sample 
size would you need to be able to detect a change in proportion of CPRatio = 1.7 ? 
[This calculation is the minimum sample size to declare the observed effect size, 
CPRatio = 1.7, to be statistically significant] 


