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Model Based Statistics in Biology.    
Part II.  Quantifying Uncertainty. 
Chapter 7.5    Confidence Limits 
 
 
 
 
 
 
th 
 
 
 
 
 
 
 on chalk board 
 
ReCap Part I (Chapters 1,2,3,4) 
Quantitative reasoning: Example of scallops, which combined  
models (what is the relation of scallop density to substrate?)  
with statistics (how certain can we be?) 
ReCap (Ch5) 
Data equations summarize pattern in data as a series of parameters (means, slopes). 
ReCap (Ch 6) 
Frequency distributions are a key concept in statistics. 
They are used to quantify uncertainty. 
Empirical distributions are constructed from data 
Theoretical distributions are models of data. 
ReCap (Ch 7) 
Inferential statistics are a logical procedure for making decisions when there is 
uncertainty due to variable outcomes.   
Hypothesis testing is concerned with making a decision about an unknown population 
parameter. 
Estimation is concerned with the specific value of an unknown population parameter. 

 
Wrap-up 
We used cumulative distributions to compute confidence limits, a measure of the 
reliability of an estimate. 

Today: Cumulative distributions to compute confidence limits on estimates 

ReCap.  Part I (Chapters 1,2,3,4) 
ReCap Part II (Ch 5, 6) 
7.0 Inferential Statistics 
7.1 The Logic of Hypothesis Testing 
7.2 Hypothesis Testing with an Empirical 
  Distribution 
7.3 Hypothesis Testing with Cumulative 
  Distribution Functions 
7.4 Parameter Estimates 
7.5 Confidence Limits 

The truth is out there.   
We’re going to surround it. 
 
Anonymous student. 2011. 
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Confidence Limits 
We will use confidence limits to evaluate the uncertainty on an estimate made from data. 
 
Definition. A Confidence Limit consists of two values that bracket the true value of a 
statistic, at some  specified level of confidence (say, 95%). 
 
Example -- Brook trout lengths 
 
We measure a sample of 16 0-group trout from Cat Arm lake on the Great Northern 

Peninsula, in 1982, prior to flooding to create a reservoir. 
0-group are fish less than 1 year old.  First year fish were of interest in 1982 because one 
potential impact of flooding of Cat Arm lake was reduction in numbers or size of fish 
recruiting to the population.  If there was an effect on size or numbers, then 
Newfoundland Hydro was committed to build a hatchery to mitigate the effects of 
flooding on this and other fish in the lake.  The hatchery would be built by Newfoundland 
Hydro, at the expense of those who pay Hydro for electricity.  Size was measured prior to 
flooding to establish a baseline for comparison to first year fish after flooding.  
 
Quantity is fork length  Y  =  mm 
 
Sample size is 16 
Total population in the lake is ca 700 trout 
Sampling is haphazard. 
Sampling fraction is 16/700, or approximately 2% 
 
The sample mean is mean(Y) = 53.8 mm 
This is an estimate of the true mean E(Y), which is unknown. 
 
How reliable is our estimate of the mean?  We’d like to know whether our estimate is 
close to the true value, the average length in the population of approximately 700 fish.  
We can’t know the true mean, but we can make a statement about the reliability of our 
estimate, relative to the true value of the mean. 
 
To make a statement about the reliability of our estimate, we compute a range that    
includes the true value a high percentage of the time.  This is called the confidence            
limit.  Here is a generic recipe for calculating confidence limit on any estimate. 
 
Table 7.5a Generic recipe for calculating a confidence limit. 
_______________________________________________ 
1. State population; state the statistic of interest. 
2. Calculate an estimate of the statistic from data 
3. Determine the distribution of the estimate. 
4. State tolerance for Type I error. 
5. Write a probability statement about the estimate or statistic. 
6. Plug values into the statement to obtain confidence limits. 
7. Make a statement about the probability that the line  
  (or limits) include the true value. 
 This statement is not about the statistic or estimate. 
________________________________________________ 
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Confidence Limits – Computational Flow 
 
To compute the confidence limit, we fix some probability that we can live with, then 
make a probability statement about a line that includes the true value at a pre-stated level 
of confidence. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To compute a confidence limit, we will: 
 obtain a statistic from data. 
 obtain the distribution of this statistic 
  (this is not the same as the distribution of the data). 
 use the distribution of the statistic to compute confidence limits  
  around the estimate. 
 
Graph shows this.  Start with probability range 
to compute range of statistic. 
 
 
 
 
 
 

As example, draw Chisquare distribution, 
(labelled df = 4) 
The is the distribution for the variance. 
(Draw pdf) 
Then draw the cdf above or below the pdf.
Then show Minitab computations for text 
example p 155 (Sokal and Rohlf 1995) 
 
MTB > invcdf 0.025; 
SUBC> chisquare 4. 
   0.025   0.484 
MTB > invcdf 0.975; 
SUBC> chisquare 4. 
 0.975   11.1433 
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Confidence Limits –Key to choice of distribution for computing limit. 
 
Table 7.2. Key for choosing the frequency distribution of a statistic. 

 
 
Empirical distributions are generated by taking all permutations, by sampling 
permutations, or by subsampling (bootstrap methods). 
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Confidence Limits from Generic Recipe -- Brook trout fork lengths  
 

                1.       The population is all brook trout less than 1 year of age in Cat Arm Lake 
in 1982 

 The statistic of interest is the population mean. 
 
2. The mean for a sample of 16 fish was 
  mean(Y) = 53.8 mm 
 

       3.       The distribution of an estimate such as a mean will not be exactly the same 
as the distribution of data so we use a key (Table 7.2, above). 

 
 The statistic is the population mean,  

  the data cluster around a central value, 
  and the sample size is small (16),  
  so the appropriate distribution is the t-distribution. 
 
4. The tolerance of Type I error will be set at 10%. 
 

             5.       Now that we have a distribution, and a stated tolerance for error, we can 
write a probability statement. 

 
  First in verbal form.  "The probability that a line from L1 to L2 includes 

the true mean fork length µY of CatArm brook trout is equal to 90%" 
 
 The probability statement is about 1   
 
 Next in graphical form  (refer back to figure, limits on y axis projected to x-axis) 

The frequency distribution is used to go from probability to outcome.  
This is the opposite direction from that used in hypothesis testing.  
The frequency distribution is used to go from outcome to probability in 
hypothesis testing. 

 
 Now, the same thing in symbolic form. 
 
   P L LY1 2 1      

      P Y s t n Y s t n
Y Y Y

            / , / ,2 1 2 1 1  
 

We’ll examine each of these components in detail.   
 
For now, we note   t n / ,2 1     is the absolute value of the t from the cdf 

 
 We subtract this quantity from  to obtain the lower limit L1 
1 add it to  to obtain the upper limit L2 
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Confidence limits -- Brook trout fork lengths  (continued) 
 
5. Write probability statement (continued) 
 
      P Y s t n Y s t n

Y Y Y
            / , / ,2 1 2 1 1  

 
 We use the sample mean Y   to estimate of the true mean µY 
 
 For the t-statistic we use the t-distribution, which is symmetrical around zero.   
 We use the t-distribution with df = n1 
 We assign half of our tolerance for uncertainty (/2) to each tail (5% to each tail) 
 We use the inverse cumulative distribution function cdf  to obtain the lower tail 
  probability (/2) and the upper tail probability (1/2) values for  
  the t-distribution. 

     s
Y

is the standard error of the mean 

    The standard error is estimated from the sample standard deviation of the data sY 
 
 

 
6. Plug values into probability statement 
 

  =   53.8 mm   sY  =  5.8  mm  = 10% /2 = 5% t(0.05,15) = 1.753    

 
  
           P{ 53.8  1.753*(5.8 / sqrt(16)) < µy  < 53.8 + 1.753*(5.8 / sqrt(16)) } = 90% 
 
  P{ 53.8   2.54 < y < 53.8 + 2.54}  =  90% 
  
  P{ 51.26 < y < 56.34}  =  90%  
 
7. The limits 51.26 mm to 56.3 mm enclose the true population mean 90% of the time 
 It is a statement about limits that enclose the true value of the mean. 
 The probability statement is not a statement about the sample mean . 

MTB> invcdf 0.05; 
 SUBC> t 15. 
  0.05    1.753 
 
 MTB> invcdf 0.95; 
 SUBC> t 15. 
  0.95    +1.753 

Minitab reports each tail.  
Spreadsheets and tables for t 
distribution are usually two-
tailed, showing both tails for 
positive values only. 

s
s

n

Y

nY

Y 
var( )
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Comments on confidence limits 
 
How do we narrow L2  L1 ? 
 increase   This increase tolerance of Type I error 
 increase  n This reduces the standard error of the estimate 
 decrease   This accomplished by eliminating sources of error or unexplained variance. 
 
Confidence limits use the relation of outcome to probability in a different fashion than 
with hypothesis testing. 
 
    Hypothesis testing:  go from outcome to probability 
 
 
    Confidence limits: go from probability to outcome 
 
 
Notice that Minitab gives outcomes for both tails, while statistical tables show for just the 
upper tail (positive) values of t, with probability in both tails.  This saves space in a 
printed table, because the t-distribution is symmetrical.   
 
Confidence limits are particularly useful in excluding hypotheses other than just Ho 
 
A confidence limit is not of much value if the sample is not representative. 
 
We use the t distribution for the t-statstic, the F-distribution for F-ratios, and 2 
distribution for statistics known  be distributed as chi-square.  For other statistics, we use 
an empirical distribution generated  by randomization (cf Table 7.2).  Or we can use 
bootstrap methnods ( Lab 11). 
 

  

MTB> cdf 1.753; 
SUBC> t 15. 
 1.753 0.95 

MTB> invcdf 0.95; 
SUBC> t 15. 
 0.95 1.753 

Elementary statistics courses for biologists tend to 
lead to the use of a stereotyped set of tests: 
1 without critical attention to the underlying model 
involved; 
2 without due regard to the precise distribution of 
sampling errors; 
3 with little concern for the scale of measurement; 
4 careless of dimensional homogeneity; 
5 without considering the ideal transformation; 
6 without any attempt at model simplification; 
7 with too much emphasis on hypothesis testing and too 
little emphasis on parameter estimation. 
 
M.J. Crawley. 1993.  GLIM for Ecologists.  (London, 
Blackwell) 
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Binomial Confidence Limits -- partridge berry example 
 
 
 
 
 
 
A sample of 250 partridge berries was collected to estimate worm infestation rate.   
In this sample one worm was found.   
How reliable is this as an estimate of the true rate of infestation ?   
(i.e., what are the confidence limits for this estimate?) 
 
1. Population = all partridge berries above the Logy Bay lab in Sept 1989  
 Statistic is infection rate 
 
2. Estimate of infection rate is  p  =  1/250  =  0.004 
 
3. Frequency distribution is binomial with n = 250 trials, p = 0.004 
 
4. Tolerance of Type I error:     =  10% 
 
5. Frequency is one infection, for which Minitab notation is K = 1 

P{ L1  <  K  <  L2 } = 1   
 
6. Plug in /2,  
 lower limit 
 
 
 Can't set a lower confidence limit.  Not enough information. 
 
6.   Plug in 1/2, 
 upper limit 
 
 
7. P{ K <  3 } = 0.9813 
 

The true value of the infection rate lies at or below 2/250, with a Type I error rate 
of  10.92 = 8% 

 

Binomial limits asymmetrical.   
This example illustrates very low success 
(infection) rate. 

Ask students for examples from their work, 
where showing reliability (confidence limits) 
would be useful. 

MTB> invcdf 0.05; 
SUBC> binomial n=250  p=0.004. 
 K  P(X LESS OR = K) K   P(X LESS OR = K) 
 0  0.000   0   0.3671 

MTB> invcdf 0.95; 
SUBC> Binomial 250 0.004. 
 K  P(X LESS OR = K) K   P(X LESS OR = K) 
 2  0.9201  3    0.9813 


